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ABSTRACT

The purpose of this thesis is to develop a theory of the
mechanical properties of noncross-linked polymers at temperatures
ebove the glass transformation., The relaticnship between this theory
and the dielectric dispersion of polar polymers is also discussed,

If the bond lengths and bond angies of the moleculai chains
are constant during extension of a polymer, the configuration of an
entire molecule at any time t may be specified by the azimuth angles
of the bonds in the chain, and by thes two angular coordinates describ-
ing the rotation of the chain around its center of mass, The state
of the material is described statistically by f, the relative number
of molecules having each of the possible configurations,

For a noncross-linked polymer, the only intermolecular
forces are viscous in nature, and the force on a single element (one
skeletal atom together with its side groups) is proportional to the
velocity of that element relative to the surrounding atoms, If the
polymer is incompressible, and if the strain is everywhere the same,

it follows that the molecular configurations during extension of the

polymer may be described by Smoluchowskiis diffusion equation:
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where D is the diffusion tensor of a molecule, k is Boltzmann's constant,

and T is the absolute temperature, The potential V under which the

diffusion takes place is equal to the rate of extension multiplied by




a quadratic function of the positions of the elements relative to the
center of mass of the molecule,

Cace D and the rate of extension are known, the dif ‘usion
equation can be solved for f, the probability of each molecular con-
figuration, From f it is possible to find the stress on the polymer,

In other words, the diffusion equation leads tc a general relationship
between the stress and the extension,

The solution of the diffusion equation includes the theoretical
dependence of the stress upon the temperature, The predicted temperature
effects agree with the observed mechanical properties of high polymers
such as polyisobutylene,

If it is assumed that the molecules in the unplasticized pelymer
move in the same way as in a dilute solution, the ditfusion tensor is
identical with the cne given by Kirkwood and Fucss in their treatment
of the dielectric dispersioen of polar polymers [J, G, Kirkwood and
R. M, Fuoss, J, Chem, Phys. 9, 329 (1941)], The stress relaxation
calculated from this assumption decays too rapidly with time to fit
the experimental properties of polyisobutylene, This discrepancy is
believed to be due to the chain entanglements which occur in the
unplasticized polymer, However, the diffusion tensor can be corrected
arbitrarily so that it gives the proper time dependence c¢f the stress
relaxation and therefore includes the effect of the chain entanglements,
A diffusion tensor is found which correctly describes the mechanical
properties of polyisobutylene over nine decades of time, The corre-
sponding theorctical dependence upon the molecular weight does not

quite agree with experimental results,




In determining the respense of a polar polymer tc an electric
field, Kirkwood and Fuoss use the diffusion tensor appiicable to dilute
solutions, It is possibie to introduce inte thair calculations the

new diffusion tensor obtained from the theory of extension. Except

for the molecular weight dependence, the rosults of this correction
agree reasonably well with the experimental dielertric dispersion of

unplasticized polyvinyl chloride, It therefore seems possible to find

& diffusion tensor correctly describing the time dependence of a polymer's

response to both mechanical and electrical forces,
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I, INTRODUCTION

An elastcmer may be defined as a cross-linked or noncross-~
linked linear high polymer in which the bonds of the molecular chains
are free to rotate, or at least are free to assume easily a variety
of positions, Contiguous molecules are also free to move relative to
each other., Becausc the molecules leose much of their freedom of motion
at temperatures below the brittle point, or glass transformation, it
is necessary to specify the temperature range in which a polymer
behaves as an elastomer, Examples of elastomers are polyisobutylene
at room temperatuirs and polymerized sulfur at higher temperatures,

If not worked excessively, elastomers are amorphous, To cobtain a
crystalline x-ray pattern for polyisobutylene, for example, the polymer
must be extended rapidly at least 1000% [1].

From the molecular properties of these materials, several
things can be inferred about their response to mechanical stress, When
no external forces are acting on the polymer molecules, they reach an

equilibirum state in which the bonds are randomly distrituted among

their possible relative positions, On the average, cach molecule is

then coiled up, with the direct distance from one end of the molecule ;
to the other proportional to the square root of thz molecular weight (2],

External mechanical forces can extend a molecule to many times its

equilibrium end-to-end length with orly & slight change in the internal

1, C. S, Fuller, C, J, Frosch, and N. R, Pape, J. Am, Chem, Soc. 62,
1905 (1940).

2, L. R, G, Treloar, "Physics of Rubber Elasticity," Oxford, Oxtord
University Press, 1549, Chapter III,



energy, Consequently, elastomers are characterized by a small modulus
and & very large extensibility,

The first successful application of the molecular description
of elastomers was the theoretical treatment of the mechanical properties
of cross-linked polymers in thermodynamic equilibrium [3], If the
molecules are cross-linked, as in vulcanized rubber, the chains form
a network running throughout the material, When stretched, this net-
work can support a force so long as the cross-links are not disrupted
chemically, 7T compute the force necessary to sustain a given strain,
the chain configurations consistent with that strain are counted, The
entropy and the force are then computed by ordinary thermodynamic
arguments, In this calculation, changes in the internal energy are
neglected, a reasonable assumption in view of the fact that ithe average
inter -atomic distance is affected very little by the strain, The
dependence of the stress upon both the strain and the temperature,
calculated in this way, agrees reasonably well with experiment [4].

Noncross-linked elszstomers, on the other hand, cannot support
any stress in equilibrium, 'The chains are fres to slip past one another

and to resume unstressed configurations, If the material is suddenily
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literature one might cite:

. H, Meyer, G, von Susich, and E, Valko, Kolloid-Z 59, 208 (1932),
T, Busse, J. Phys, Chem 36, 2862 (1932)

Karrer, Phys. Rov. 39, 857 (1932)

M, James, and E, Guth, J, Polymer Sci. 4, 153 (1949),

T, Wall, J Chem, Phxs. 11, 527 (1943),

J. Flory, and J, Rehner, Jr., J. Chem, Phys. 11, 512 (1943),
Kuhn, Kolloid-Z. 76, 258 (1936‘7 and

R, G. Treloar, Trans Faraday Soc. 40, 59 (1944).

L"‘Si'v'ﬂ.:'.ﬂzﬂ

4, P, J, Flory, Chem, Revs, 35, 51 (1944); and P, J, Flory, N, Rabjohn,
and M, C, Shaffer, J, P Polvmer Sci, 4, 225 (1949).
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extended and then kept at a constant length, the stress decays very

slowly to zero from its initial value, During a large part c¢f this

relaxation, the force is approximately a linear function of the log-
arithm of the time [5].

The effect of temperature on the stress relaxation is iwofold,
First, the force at small times is proportional to the absolute tempera-
ture, similar to the equilitwrium forces for cross-linked polymers,
Secondly, raising the temperature makes the relaxation more rapid,
Reducing the molecular weight also increases the rate of relaxation,
but does not alter the magnitude of tha force at small times.

When an elastomer is polar, it not cnly has interesting
mechanical propertics but it alsn exhilits an anomalous dielectric
behavior [6], The dielectric dispersion of a polymer such as polyvimyl
chioride depends on the frequency of the applied voltage, and nas a
trgad, low maximum in the audio frequency range. Debye's single relax-
ation time does not explain the frequency dependence of the loss, and
a distribution of relaxation times is necessary to dsscribec tho exper-
imental results, The frequency of maximum loss varies with the
temperature, indicating a temperature-~time relationship similar to that
observed for the mechanical properties,

A theoretical treatment of the dielectric dispersion has been

given by Kirkwood and Fuoss [7]. In this theory, it is assumod that the

S. R. D, Andrews, N. Hofman-Bang, and A, V, Tobolsky, J, Polymer Sci.
3, 669 (1948).

6, A summary of the dielectric relaxation of polymers is given by
W, Kauzmann, Rov, Mod, Phys, 14, 12 (1942).

7. J. G, Kirkwood, and R, M, Fuoss, J, Chem, Phys, 9, 329 (1941),




the bond lengths and bond angles of each polymer molecule are always
constant, but that the azimuth angles of thc bonds are continually
rotating due to the thermal motion of the atoms, In the presence of
an electric field, the azimuth angles tend to rotate so that the indi-
vidual dipoles of the molecule are aligned as much as possible with the
direction of the field, The only forces opposing this change in the
molecular configuration are viscous drag forces on each of the polymer
atoms, The solution of the diffusion equation describing this process
indicates that a molecular chain moves in sections of various length,
with each section acting as a single mechanical and electrical unit,
One might say, roughly, that the distribution of possible section
lengths for a single molecuie produces the distribution of relaxation
times, This theory predicts a broad maximum for the dielectric loss
at low frequencies, but the calculated maximum is too large and too
narrow to agree quantitatively with the experimental resulis for
unplasticized polyvinyl chloride.

Kirkwood [8] has exiended the diffusion theory to include a
treatment of the nonequilibrium mechanical properties of cross-linked
elastomers, He assumes that the stress on the material is carried
entirely by the cross-links between the polymer chains, Each molecule
tends to increase in length under the stress-dependent ferce across
its tiepoints, with the moiion of the molecule being retarded by the
viscous forces on each of the polymer atoms, The results of this theory

have not been compared with the experimental properties of elastomers,

8, J. G. Kirkwood, J, Chem, Phvs, 14, 51 (1946),




In Kirkwood's theory, it is assumed that the viscous force
on an atom in a given molecule is proportional to the velocity of that
atom relative to the center of mass of the moclecule, Actually, however,
the viscous force depends on the motion of the atem relative to its
immediate surroundings, That is to say, the force is proportional to
the velocity of the atom minus the velocity of the material around the
atom, where both motions may be measured relative to the center of mass
of the molecule. The velocity of the material ai any point is zero
during the application of an electric field, but is not zero if the
polymer body is being strained by a mechanical force. For extension,
it may he shown readily that this velgcity is proporticnal to the rate
of extension of the polymer bocdy., Consequently, there is a term in
the viscous force which is not related directly to the stress on the
polymer or to the motion of the molecule, but depends instead cn the
rate of extension. This terr is neglected by Kirkwood although it
can contribute to the intermolecular forces,

The importance of this term may be seen most clearly if we
consider a noncross-linked poiymer., In Kirkwood's theory, an external
stress cannot be applied to a polymer molecule unless it is cross-~
linked to the rest of the material, This comes about because it is
assumed that the stress is carried entirely by the cross-links, The
predicted modulus of 2 noncross-linked elastomer is therefore zero, a
result that does not agree with experiment,

In this thesis, the mechanical properties of an elastomer
will be derived by a method which includes the effects of the viscous

intermolecular forces, We shall begin by relating the rate of extension

.




of the polymer to the flow of the material around the center of mass
of a given molecule., The way in which the flow affects the viscous
forces on tho mclecule will then be derived., A diffusion equation will
be found which describes the way in which the molecules change their

configurations under these forces. Only noncross-linked polymers will

be considered in order to emphasize the strain-dependent nature of the
intermolecular forces,

Qualitatively, the diffusion equation indicates that the
molecules move in the following way, If there are no external forces
on the polymer, the thermal motion of the molecules tends to orient
them randomly, and the distribution of bond directions is spherically
symmetric, During externsion of the polymer, the azimuth angles rotate
sn that the molecules tend to line up in the directicu of the extension,
If the slasiomer is then kept at a constert leagth, the molecules slowly
return by their thermal motion to a spherically symmetric distribution,
This latter process is accompanied by the stress relaxation,

Once the configurations of the molecules zrc Xnown, one can
calculate the stress on the elastomer, Since the configurations are
determined by the rate of strain, it is possibie to find a general
relationship between thc stress on the elastorer and its resultant
extension, This relationship willi be expressed in terms cf a distri-
bution of mechanical relaxation times,

The theoretical stress ralaxation obtained in the above manner
has the correct temperature dependence, but decays too rapidly in time

to agree with the experimental data for unplasticized polyisobutylene,




e @ e . et et e

It is believed that the primary reason for this discrepancy is that the
motion of a polymer moleculs is altered by its entanglements with the
neighboring chains. These entanglements retard the changes in the con-
figurations of the molecule and effectively increase the resistance
constant of each atom, where the resistance constant is the ratio of
the viscous force on an atom to its velocity., In other words, the
viscous force on an atom in an unplasticized polymer will be much greater
than the corresponding force in a dilute polymer solution, Furthermore,
the magnitude of ths force will depend upon the position of the atom
in its polymer chain, In order to introduce the effect of the entangle~
ments into the theory, the resistance constants of the atoms will be
made an arbitrary function of distance from the ends of the chain,
contrasting with Kirkwood's assumption that the resistance constants
are the same for all the atoms, A set of constants will be found which,
when substituted into the diffusion equation, gives the correct depend-
ence of the stress relaxation upon the time as well as upon the temperature,
The dependence upon the molecular weight is not predicted correctly,

The treatment of the dielectric dispersicn vy Kirkwood and
Fuoss is applicable only to dilute solutions of a polar polymer, because
it does not include any interactions between the polymer molecules,
However , the theory can be corrected for the chain entanglements by
introducing the set of resistance constants which gives the correct
mechanical properties of an unplasticized polymer, This correction
will be carried out in the last section of this thesis., The resultant
dielectric dispersion agrees quantitatively with the experimental prop-

erties of unplasticized polyvinyl chloride,
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Excert for the moleculer weight dependence, it would therefore
appear that the ad hoc set of resistance constants correctly describes
the molecular diffusion within an unplasticized polymer at temperatures

above its glass transformation,




ITI, THE MOLECULAR FROCESSES RESULTING FROM MECHANICAL EXTENSION

This section describes the effects of mechanical extension
upon the positions and configurations of the molecules in 2 noncross-
linked elastomer, By evaluating the intermolecular forces which result
from extension, we can find the diffusion equation satisfied by the
molecular configurations, It is then shown that solution of the dif-
fusion cquation leads to a relationship between the stress on the polymer
and the resultant strain, This relationship includes the dependence

of the stress and the strain upon the tiue,

A, The Macrosocpic Flow During Extension

Consider a right circular cylinder of elastomer, of unit
cross-section and unit length when unstressed, The dimensions of the
cylinder are much larger than the dimencicns of ths molecules, Let
the cylinder be extended parallel to its axis by a tiress s(t) applied
to the ends of the cylinder. The stress is an arbitrary function of
the time t, The macroscopic strain <(t) is the relative increass
in the length of the cylinder, It will be assumed that €(t) is always
much less than unity and that the area of the cylinder changes cnly
slightly during extension, It will also be assumed that any heat gen-
erated by the application of the external force to the body is carried
off rapidly enough so that the temperature T of the clastomer is constant,

Let us erect a coordinate system at the center of mass of any
one of the molecules in the cylindsr, with the = axis parallel to the
axis of the cylinder, During extension of the polymer, the origin of

this coordinate svstem moves with the center of mass of the molecule,
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The usual cylindrical coordinates o, ¢, and 2 wiii be used to measure
pesition relative to the coordinate system,

Consider a volume AV which has dimensions small compared
with the dimensions of the elastic body under consideration, but large
compared with tae size of a single atom, Also, let us define a time
interval At which is small compared with the times involved in any
experiment on the polymer body, but large compared with the time in*er-
val: necessary to describe any single atomic collision or interaciion,
Let v denote the average velocity of all the atoms inside AV during
the time interval At , This velcocity is measured relative to the
coordinate system moving with the molecule, It will be assumed that
AV and At exist such that v is a continuous and differentiable
function of time and of position in the body.

If the strain inside the cylinder is everywhere the same,
the velocity ¥ is independent of the choice of molecule upon which
the coordinate system is erected, From this fact, an expression may
be found for v in terms of the rate of extension. By cylindrical
symmetry, v will not have a component in the ¢ direction, nor wilil
any of its components be a function of ¢ , Also, it may be shown
readily that the = compeonent of v is everywhere independent of P
and that the o component of - is independent of z . We can summarize

these results by the vector equation“

X = 1
v31£- 0. (1)

A V3 denctes the usual three-dimensional vector operator (see page 16)
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A second property of W is obtained from conservation of the
mass of the body, Ti the elastomer is incompressible, the density is
independent of the time and the divergence of v is zero:

Qg-g'=(l (2)

Finally, the boundary conditions upon v may be given, If
€(t) is much less than unity, the limit of (V) as z becomes very

large is

limit ('}_{)zzz:_i'- (3)

z -0

At the origin of the ccordinaie system, v is identically zero,
Equations (1) and (2}, together with these boundary conditions, uniquely
define the velocity function., The # component of the velocity is given

everyvwhere by

= z9¢
(W) = 2 5% (4)
and the [~ component by
__ 1 _de
Ve =-7P, 3% (5)

From these equations, we may show readily that the trajectories

of the material relative to the molecular coordinate system are

ffz = constant. (6)
This set of trajectories implies that every small, right circular
cylinder of material, with its axis parallel to the Z axis, always
moves inside the main cylinder so as to retain its cylindrical shape

and constant volume, The flow pattern of the material is shown in
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Fig, 1. Flow Pattern of an Incompressibdle Naterial ia Exiensisa
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B. Description of the Molecular State

To define the state of the polymer at any time €, it is
necessary to add to v a description of the configurations of the mole-
cules, The instantaneous configuration of a molecule relative to a
coordinate system erected at its center of mass can be specified by the
direction of the center bond and by the azimuth angles along the polymer
chain, If de¢/dt is small, the bond lengths and bond angles arc constant
during extension, The side groups of the molecule may be free to change
position internally and to rotate around the bonds connecting them to
the main chain, but these motions can be neglected if the side chains
are relatively short,

The zenith and azimuth angles © and ¢ will be used to specify
the direction of the center bond, If the molecular chain consists of
Z2n-] single bonds, the azimuth angles can be denoted by Xz,k', ,...,Xz,,_, )
numbered from one end of the chain, Exact definitions of 6, ¢ and
X21X3,..., X4n., are given in Appendix I, The configuration of an entire
molecule is specified by its 8,8, X,,..., X, .

Without loss in generality, it may be assumed that all of the
molecules have the same structure and molecular weight, and are indis-
tinguishable, Consequently, the state of the molecules at any time 1
may be specified by the number of molecules having each possible config-
uration, without specifying which molecules have which configurations,

For this purpose, §(9,%.X,...., %, ;) is defined such that
¢ sin8dOdg dX,... dxzh_, is the fraction of the molecules having

configurations between O, $, Xz,Xa,...,X

)’_z-o- AXZ . ’chn_'+ dXZh-

2., and ©+d6, $+dg,

B The number of molecules is constant,
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and the integral of § over all possibie configurations is always unity:
ggd1=l. 7)
The configurations of the molecules may be described most
conveniently in *he Zn dimensional coordinate space in which
SN SRR S arz orthogonal ccordinates, The differential
volume element ch in this space is equal to sin@d8dg dX,.:. dxz,,_, 2
If the configurations of all the molecules of the polymer body are platted
as points in this space, the configurational probability ¢ 1s propor-
tional to the density of the points.
The velocity of all the points in the volume element dCL 5
when averaged over the time interval At , is denoted by v . The

components of u are &, $sinb, )22.* Xy,  SP The

- .
velocity v at a particular point in the space gives the rate of change
of the corresponding molecular configuration, Specification of u over
the entire space describes the way in which all of the configurations

are changinyg with time,

In summary, the state of an incompressible elastomer may be
specified for our purpose by ¢ , the probability of each configuration.
The rate at which the state is changing may be specified by the velocities
v and v . By using this statistical descripticn of the molecular

state, we can find the response of an elastomer tc mechanical and

electrical forces,

C. The Diffusion Eguaiion for the iolecular Configurations

Once the state of the elastomer is defined, it is possible

to describe the intermolecular forces, Knowing these forces, we can
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obtain the equation of motion of the moiecules, Because the stress and
strain are measured as averages over times at least as large as the
interval At , the forces acting on a given molecule may also be aver=
aged over At ., Only that average force need be considered in finding
an equation of motion,

If the side groups are small, the average motion of the groups
on any single atom of the main molecular chain is the same as the average
motion of the atom itself, Hence, the entire molecule including its
side groups may be divided into 2n equal elements which may be treated
as rigid bodies, Each element is at a constant bond length and bond
angle from the next element along the chain, but is free to rotate around
the azimuth angle of the bond. The forces on each eclement consist of
the constraint forces required to keep the bond lengths and bond angles
constant, plus the average external force due to the surrounding atoms,
The constraint forces need not be considered if the molecular motion
is described in the internal coordinate space of 8, @, Xz ,.c.0 Xpney-

The thermal motion of an element consists of jumps from one
stable position to another, accompanied by rearrangement of the surrcund-
ing atoms, Let <v; denote the velocity of the i-~th element in the
chain (numbered from one end). This velocity is measured relative to
the center of mass of the molecule, and is averaged over the time
interval At . If the energy of thermal agitation is large compared
with the energy required for a single jump, many such motions occur

during &t , To a good approximaticn, v; is a continuous function

of time, This approximation implies that v is also continucus,
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From this description of the motion of the molecules, it may
be pistulated immediately that the average intermolecular force fi on
the i~th element is viscous in nature, and is proportional to the velocity

of the element relative to its surroundings:

F. = Sy —-vi), (8)

where v is measured at the position of the element in question, The
resistance constant §; is assumed to be independent of the velocity
and position of the element,

One part of F; may be derived from a potential V, , defined
by

" V= Gov (9)

As in Equation {(8), v is measured at the position of the i-th element,
From Equations (4) and (5) we may show readily that

Vi = 4t Gl - 22l), @0

Introduction of V, into Equation (8) gives

f; ="'V3V;_—§i‘y‘1. (11)
For an unplasticized polymer, there is no need to consider
the hydrodynamic interactions between elements of the same molecule,
The flow represented by v describes the motion of all the atoms near
the i-th element, including those on the same chain, F.  therefore

includes the forces between elements of the same molecule, This case

ie quite different from that of a dilute solution of a polymer, in which
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the hydrodynamic interactions must be considered separately frcm the
viscous forces dus to ths fiow of the solvent [9].

All of the viscous forces acting on a molecule are equivalent
to a generalized force f,.( in the interual coordinate space of

6, P, X3, Xg1--sX,, - This force is given by

.'F‘::—vv‘: A Y (12)
where o is the resistance tensor., The components of p may be found
from the resistance constants by computing T; , the torque around an

angle X . produced by rotation around some other angle Xj :

J
The calculations for © are given in Appendix I. The potential V{, is

the sum of all the individual potentials of the elements:

Ve = 255 2 G (pl-22). (14)

It should be noted that the V in Equation (12) (and in all succeeding
equations) is the vector operator associated with the internal coordinate
space, and consequently has 2n dimensions. The V; in Equations (9)
and (11) is the usual three-dimensional gquantity.

If the polymer body is in equilibrium and there are no external
forces on the molecules, the augies S, #, Xg,---5X 0, are free to

assume any possible set of values (assuming that the bond rotations are

S

3. F. Bueche, J, Chem, Phys, 20, 1959 (1952). The hydrodynamic inter.
actions and their effects in polymer solutions are described by

J. G. Kirkwood, and J. Riseman, J, Chem, Phys, 16, 565 (1948);

J. G. Kirkwood, Rec., Trav, Chim, 68, 649 (1945); and

J. G. Kirkwood, and P, L. Auer, J, Chem, Phys. 19, 281 (1951),

0
et e e e
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entirely unrestricted), Owing to tke thermal motion of the molecules,
all possible configurations of the molecules are attained during a long
interval of time, The configurational probability ¢ is equal to ¢,,

a constant in the internal coordinate space:
f = 5.=[§aq]". i5)
Furthermore, ¥ is identically zero.
If the body is not in equilibrium, § is not equal to f, .
The thermal motion of the molecules tends to shift ¢ gradually back
toward the equilibrium distribution, and v is not zero., The effective
force (averaged over At ) that is equivalent to this tendency to return

to the equilibrium state is —k, T Vs/¢ , where k  is Boltzmann's

constant, During this motion, ¢ must satisfy the equation of continuity.

>
Vo(ry) =~ (18)

When there are no electric torques acting on the molecules,
the sum of the thermodynamic force and the viscous force is ecual +tc

zero (assuming negligible inertia for the molecules):
Fo—hTVg/s=0. (17)
Introduction of the diffusion tensor D , defined as

o= kTe", (18)

-~

and use of Equations (12), (16), and (17) lead finally to the diffusion

equation:

(U2

V-D-[Ver ¢VV,/kT] = S5 (19)




This equation can be solved for ¢ if the potential V& and the dif-
fusion tensor B are known*.

The diffusion equation may be written in the form of Equa-
tion (19) only when V% exists; that is, when the viscous forces are
"conservative”", The existence of a potential follows immediately from
the fact that the curl of the velocity is zero (Equation 1), If the
external stresses applied to the elastomer were shear forces, then the
curl of the velocity would not be zero and a scalar potential would not
exist, The solution of the diffusion equation for shear forces will
not be studied in this thesis#.

If an electric field instead of a mechanical stress is applied
to the polymer, the cnly change in the diffusion equation is the renlace-
ment of V¢ by Ve , the electric potential of a molecule in the field.
The same diffusion tensor is applicabie in both cases, The diffusion
equation is then identical with that used by Kirkwood and Fuoss to
corpute the dielectric response of a polar polymer [7], In general,

for th: application of either an electric field, a mechanical extension,

or both simultaneously, the equation ot motion for ¢ may be written as

VD[ Ve + ¢9V/iT] = 2—‘ (20)

ﬁThis section is not meant to be a demonstration of the applicability of
Smoluchowski's diffusion equation to elastomers &t temperatures above
the glass transformation. It is intended, rathor, to show that the
applicability of the diffusion equaiicn is 2 reasonable assumption, and
that the potential for noncross-linked molecules is then given by
Equation (14). For a discussion of Smoluchowski's equation, see
S. Chandrasekhar, Rev, Mod, Phys, 1%, 1 (1943),

#For a discussion of shear forces in solutions, see [9]. A somewhat

different method of approach is given by P, Debye and A, M, Bueche,
J. Chem, Phys, 16, 573 (1948),




where the total potential is

V=Vt V. (22)
This potential applies only to noncross-1intizd polymers and dces not
include the forces cn a molecule due to permanent cross-links, No study

of such forces will be made here,

D, The Relationship between the Stress and the Strain

Retluraing to the problem of mechanical extension of a noncross-
linked elastomer, we can derive a gener2l expression for the mechanical
energy required for extension. The rate at which energy is withdrawn

from the surrounding atoms by each molecuie is the sum of the scalar

products of £, and v o
) o .
(b_t- )mo\ecu\e - Z E"}-r . (22)
Replacing v by (v-v:)+ v, and using Equation (8),we have
DE\ = l ”
(at,mo\ecu\e —ZB'[E..‘”"Y;]- (23)

The corresponding equation in the internal coordinate space is

(%)

t ‘molecute Es'[/:.l' F Tg]* (24)

~&
From Equations (12), (17), and (18), we obtain

[25) —o Ngo DV (25)
ot 'molecule $

B y’, the complex conjugate of <, is introduced to ensure thzt tne

energy is real,
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If the total number of molecules per unit volume is n, , the
number of molecules with configurations between 9, ¥, Xz,---‘xéh_.
and 6+de, ¢+dé, X2+dxz, vy Xg, +d X, is nogch "
where dq is smOde d¢ dx,... d¥X, . The total rate at which

energy is introduced into the body 1s the rate at which energy is supplied
to each molecule, multiplied by the number of molecules having the same

configuration, and integrated over the internal coordinate space:

o€ .

St = e Vi DUV dq. (26)
Applying the divergence theorem and noting that the coordinate space
has no boundaries (it is everywhere re-entrant as the angles

0,8, Xoy---y th,, change by T or 2 ), we obtain

*
% = nfV, V-D-Vedq. (27)

Thus the total rate at which energy is supplied to the elastomer may be

calculated from the potential and the configurational probability. It

is not necessary to determine explicitly any of the forces or velocities,
In order to interpret the rate of energy transfer in physical

terms, Equation (26) may be considered in a slightly different form:

2 -k TJ(EE) D *V )ch, (28)
of =hk°TjIm. V-D- LY{;A (29)
o st T Vo / % ‘
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By substituting for V'-D -(;VV{,/'\,T) from the diffusion equation

and applying the divergence theorem, it is possible to obtain: '

€ > D"
a——t =nhk, TS j; )w{dct+nLT'S&—éuch. (30)

If the entropy per unit volume were defined as
S = ok, ¢ ingdq, (31)

the first term in Equation (30) would be the time derivative of TS .
It represents the rate at which cnergy is stored in the elastomer, and
is dependent only upon the configurations of the molecules, Cver a
complete cycle of sinusoidal motion, this term does not coniribute to
the total energy loss, The second term in Equation (30) is a positive
definite quantity that increases the energy supplied to the elastomer
monotonically with the time, It represents thc viscons loss due to
the selative motions of the molecules, and is the rate at which energy
is dissipated as heat,

It is now possible to find an expressicn for the siress S(‘)

The rate at which energy is supplied to the body is equal to

:))i S‘t)ﬁ— (32)

Equeting this energy to the energy given in Equation (27), we obtain
finally

st = - 7. dq.
! (t)f Ve v’f

(33)

This equation compleies a general descripticn of the phenomena

occurring during extension of a noncross-linked polymer, If the exten-
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the molecules may be calculated from Equations (4) and (5), Equation (14)

gives the potential \2 in terms of de¢/dt . If the resistance tensor

and its inverse are known, the diffusion equation may then be solved
to find the internal configurations of the molecules, Substitution of
\& and § into Equation (33) gives the stress, In other words, it
is possiblo tc find the external stress that must be impressed on the
cylindrical polymer body in order to produce a given extension,

The above set of equations is equivalent to a distribution
of relaxation times defining the general relationship between s(t)
and €(t) , 1In Section IV, a method will be given for calculating the

distribution of relaxation times once the resistance tensor is known,
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III, QUALITATIVE DESCRIPTION OF THE MOLECULAR MOTION DURING EXTENS ION

Before deriving a general solution for s(t) , it might be
pertinent to discuss qualitatively the molecular motion resulting from
various types of extension, If the material is initiaily in equilibrium,
the molecules are randomly oriented and have equal probability of
assuming all possible configurations. The molecules move from one
configuration to another by random thermal motion, and there is no net
gain or loss in the number of molecules having sach configuration,

This state corresponds to ¢ = ¢, and v=0 ,

Let us suppose that the material is now extended at a constant
rate, The molecules move past one angther in a continucus stream,
Relative to the center of mass of any given molecule, the flow may be
represented by the lines in Figure 1, The molecules move in from the
sides and out toward the top and bottom of the figure, This motion
tends to pull the randomly oriented molecules into alignment with the
direction of extension, Each element along a molecule is subjected
to a viscous force proportional to its velocity relative to the sur-~
rounding material, At first, when the extension is small, the elements
are free to move nearly at the same velocity as the surrounding atoms,
and the forces on the molecule are small, As the flow continues, the
constant bond lengths and bond angles prevent the elements from following
the flow lines, and the forces on the molecule increase, After vory
long times, a steady state of viscous flow is reached; in which the
molecules on the average are not changing their configurations although

they are still moving relative to each other, The external stress, an




average of the molecular forces through a cross-section of the material,
has then risen to a constant maximum value, The probability of each
configuration is again independent of the time, but is now given by

Vf +.§:VVC/K,T =0l (34)

or - ¢ = A e—\/‘_/k:r’ (35)
where A is a normalizing constant, In other words, the configurations

of the molecules are described by a Boltzmann distribution, and are in

thermodynamic equilibrium even though the macroscopic dimensions of the
elastomer are changing with time.

Let us assume that the extension is now suddenly stopped, and
that the length of the cylindrical body is fixed, The flow of the
molecules past one another is zero. Each molecular chain is free to
diffuse back to the state § = g, , assuming, of course, that no crystal-
lization has occurred, The contracting molecules tend to drag the
surrounding atoms back with them along the flow lines, and an external
force is necessary to keep the material at constant extension, After
a very long time, ¢ again returns to {, , and all possible configura-
tions are equally probable, The viscous forces are then reduced to
zero, So far as the individusl molecules are concerned, this state
is precisely the same as the initial state even though the macroscopic
dimensions of the material have changed permanently,

Let us consider finally what happens during an experiment in
stresy relaxation in which the elastomer is suddenly extended to a

constant length, If the extension is rapid enough relative to the rate




of diffusion, the bonds are distorted and new degrees of freedom are
introduced into the molecular configurations, In this state, { cannot
be described solely in terms of 9, $,X,,..., X, | . After the
extension is fixed, the bonds return quickly to their equilibrium length,
and the stress simultaneously decreases from a large value to a more
moderate one, At this moderate stress, the molecular configurations
can again be expressed in the internal coordinate space of

e, P, ng--- s X:zm« , and the intermolecular forces are entirely
viscous in nature, At still later times, the molecules slowly diffuss
back to the equilibrium state, The force decays to zero during this
process in the same way as it decays during the relaxation described
first (constant length after slow elongation), and may be calculated
from the solution of the diffusion equation,

It is apparent from this discussion that the diffusion theory
of Section IX correctly desc..ues the stress relaxation only at fairly
long times after extension, Unless changes in the bond lengths and bond
angles are introduced, the thecry cannot be used to describe the initial,

rapid decay of the stress [10],

10, A, V, Tobolsky, J. Am, Chem. Soc, 74, 3786 (1952) points out that
there are two distinct phenomena occurring during the stress
relaxation,
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IV. GENERAL SOLUTION OF THE DIFFUSION EQUATION

In order to find a general solution for s(t) in terms of

e(t) , let us assume that €(t) is given by (the real part of)
iwt
© . (36)
The (complex) amplitude €, is independent of the time. From Equation (14),

the potential is then*

V= ‘—“2& g’f‘.(P?—Z'!?) ewl: (37)

The resistance constants §. will all be equal to a constant §, in
a solution so dilute that there are no interactions between the moclecul. =,

Whether §; is equal to ge or not, V may be written as

twt
V=\e , (38)
(we b, €., 2
where V°=“' 7 Z 't—o'((’e"zi?)- (39)

For a potential of the above form, ¢ may be expandud in a

Fourier series in the time:

i.hwt
§= 0 60 (40)
n=0
vhere ¢, is independent of the time but is a function of
6,8, X,,...aX,,., . If € is small, the potential of any possible
configuration will be small compared with kT . From Equation (19),

it follows that g, is much smaller than ¢, _, , and the higher terms

*rhe subscript on the potential will be omitted hereafter,

!
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in the Fourier series for § may be neglected:

J iwt
=%+ 8¢ : (41)

Substitution of V and § into Equation (19) gives
V-D-V¢g. =0 (42)

siid VD[ Vs + £ VV/KT] = twg,. -~

If V were identically zero, f would reduce to ¢, , Con-
sequently, ¢, must represent the state of equilibrium and be independent

of ©,¢,X,, X, ”y XQ,,_, . When normalized,

-1 2n-)
- - /
fo={fdq] =1/202m ", (44)
and is identical with the {, introdu..l previonely,

Let us now define the orthogonal eigenfunctions ‘/’)‘ of the

diffusion operator V-D-V

V:D-V¥ + NK=0. (45)

The }/& are a complete set of all the functions of e,¢, )Lz,-.. ‘x',,,_,
satisfying Equation (45), Each eigenfunction Sﬁ has a corresponding

eigenvalue A, The eigenfunctions are to be normalized as well as

crthogonal:
* *
W’x(’ﬁ‘ dq = 5 » (46)
v : 50 i
vhere V’r is the complex conjugate of 3‘7, and ax 18 Kronecker's

delta,
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A may be expanded in terms of the eigenfunctions:

T L‘U(neo‘_ , )
V, = i Zrdxvf,\. (47)

From Equations (39) and (46), the expansion coefficients dx , Which are
independent of ©,¢.%,,..., X, as well as the time, are given

by

dy=[7 | S (ef-228) 4 4q. (48)

The time dependent part of ithe configurational probability alse may be
expanded in terms of the %
=i\oa A
{'. - Z__ Y2 %;‘ E (49)
A
Substituting the expansions of V and §, into Equation (43), using

Equation (45), and integrating over the internal coordinate space after
multiplication by ')"; , We obtain

_ Zwt.eov&—o

by = =T (e ey O (50)

Finally, substituting b, into the expression for § , we have

by

_ twe, €V ‘wt
£ = fo— 4k T Z(H-Lw/)\) (51)
By Equations (45) and (51), V- D- Vﬁ: is
_ we 8 {5, A, ¥ et
e e VU (52)

.
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The complex conjugate of the potential, by Equation (47), is

twe, §
V=i ;a ¥ e (s3)

Introducing these last two expressions into Equation (33) together with

de/dt from Equation (36) and using the orthonormality of the ?&

we have

(1+iw ) ’ (54)

This equation gives the amplitude and phase of the stress that must be

applied 4o a cylinder of the elastomer in order to preduce a sinusoidal

extension of amplitude €, .*

To the approximation that ihe siress is a linear function of
the strain, a convenient way to express the general experimental relation-

ship beiween the stress and the extension is in terms of a distribution

of relaxation times E£°(¥) . E(r)  is defined by
ol ey i
~(t- v S
= 2 E.( ) S
s(t) V( _} € dt dT (55)
t'=-00 TIO ~
twt
“Hhen €{t) is given by the real part of e€,¢€ , the succeading

equati,as Jor V, ¢ , and s(t) should also be prefaced on their right
sides by the words "the real part of," Equation (33) for the stress

should be written as the real part of V¥, multiplied by the real

part of V-D-V§ , and divided by the real part of de/dt | How-

ever, V is always in phase with de/dt , and "the real part of"

may be omitted in all the equations. It should also be noted that

V*® is determined by changing the factor in V dependent upon the

configuration of the molecule and does not involve a change in the

complex dependence upcen t .,
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The sinusoidal scluticn of the diffusion equation given by Equation (54)

is sufficient to calculate the distribution of relaxation times,

define (2()) as the sum of all the terms d,. d;

than X :

any -::‘}: cl),d:.

NeA

having N

Let us

less

(56)

In practice it is nearly impossible to perform this summation exactly,

and (N rmust be approximated by a continuous function of M\,

this approximaticn, its derivative exists:

41 (x)
H = 000

By introducing H(}) inte Squation (54), we may express

integral instead of a summation:

. 2 R i ‘ot
N tnwe G, AR(araa W
s(t) = e .

i 3 T ey &
tok,T 4 (1 +vwiA)
pYee]

Substituting a new variable

t
= —
A

into this equation, we have

m .
- ihowé'.f,z H{z)d» e““‘t
T kT (iriwr) )

rso

s(t)

For sinusoidal motion, Equation (55) becomes

s(t) = stJmTE'(T)d'r wt

(v iw)
T:=0

To

(57)

~~
[9)]
w
~-

(59)

(60)

(61)
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If Equations {60) and (61) are to give the same amplitude and phase for
the stress, E'(T) must be identical with

s ne Lo ML)

Bl =i (62)

This equation completes the derivation of the general theoret-
ical relationship between the stress and the strain. The method for
finding EY{¥) from the diffusion tensor D may be summarized as
follows: (1) the eigenfunctions ¥, of V-D-V are calculated from
Equation (45); (2) from the ¥, the expansion coefficients d) of
the potential are obtained from Equation (48): !3) the function Fron
is calculated from the d, by Equations (56) and (57); and (4) H(N)
is substituted into Equation (62) to find E{¥) ., The solution for

E(*¥) may then be substituted into Equation (55) to fimd the stress

corresponding to any form of e&(t) , whether sinusoidal or not.
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V., SPECIFIC SOLUTION FOR THE STRESS RELAXATION

In this section, the distribution of relaxation times is
computed from the diffusion tensor obttained originally by Kirkwood and
Fuoss, The stress relaxation at constant extension is then calculated
from E'(‘?) and compared with published experimental results for poly-
isobutylene,

The first step in finding E(*) from the general derivation
in Section IV is to evaluate £, the diffusion tensor. D is defined

i R 5 .
as k,Tp s where o expresses the relationship between the viscous

torques and the rates of change oiff the angular coordinates

6’¢)X2,..., 7\2"-‘ :
TL =Z faj k’bj‘ (63)
J

The vesistance tensor o has been evaluated by Kirkwecod and Fuoss*;

their derivation is reproduced in Appendix I, The teansor P is dependent
upon the resistance comstants §; of the individual elements of the
chain, It is assumed in Appendix I that all of ths &, are equal to
g, , vhere C, (introduced and defined approximately on page 26) is
the resistance constant of an element moving in a liquid composed of
the unpolymerized elements, In other words, it is assumed that the
viscous force on a polymer rnain is the same whether or not the sur-
rounding fluid is polymerized,

The resistance tensor o resulting from this assumption is

a complicated, nondiagonal function of the angles defining the

%See Appendix I of [7].
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configuration of the chain, It is so complicated that exact evaluation
of its inverse is impracticable. However, we can approximate o by
noting that f, is much smaller than {, in Equation (41). In other
words, the distriluiion of molecular configurations is very close to
the equilibrium distribution ¢, , Thus, there should be only a small
change in E() if 2 1is replaced by p , its average over all pos-
sible configurations of the molecule, To this approximation, the

diffusion tensor becomes

-
= }(J (B). (64)

1ol

Evaluation of § is quite simple because © is diagonal in ihe internal
coordinate space, From Equations (130) and (131) in Appendix I, the

nonzero components of D are

:ﬁoe= §¢A = DO/Z (65)
2nd . = of1-158], (66)
where 0 = 3&:!'/g°a2nz, (67)

a. is the bond length and n is half the number of elements per mole-
cule, ({Tor substituted polyethylenes, n is equal to the number of
monomers per molecule,)

From Equations (133) and (134), the corresponding eigen-

functions ‘1; of the diffusion operator are
Y2 = -nsi . -
@2+ A= V17 " P m.¢ﬁ' Y inXy
%= 4w(2+|m.l)‘.] S ACORIE (aa
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and the eigenvalues are

2n-i -2
)\ = o{é £+l)+Z[|-—'—] f} (69)

2
The ﬁ:‘ are the associated Legendre polynomials, The total set of
eigenfunctions includes the 9& for all positive ,é, all m, whose
absolute values are less than or equal to ‘Q, and all positive and
negative m, , The above results are those obtained by Kirkwood and
Fuoss (7].
The next problem is to find the expansion coefficients dx

of the potential, From Equation (48j, the éx are equal to

2 2y
dx=ﬁ‘:JZ(/oi—23;)V;ch (70)
3
when §z= :o . We might note that the potential is a quadratic

function of the position of the elements, This case contrasts with

that for an electric field, where V is linearly dependent upon the

positions of the polar side groups, Because the potential is quadratic,

evaluation of the dx is quite laborious, A summary of the compu-
tations for the aA is given in Appendix II,
After the d, have been determined, the next step is to

find

=) (1)

N$N
£2(N)  is the sum of the squares of all dﬁ vhose corresponding
eigenvalues are less than A . It is nearly impossible to evaluats
this summation exactly, but it can be approximated in the following

way. Let us consider all the d, having some particular absolute

value, These dx have corresponding eigenvalues (given by Equation (69))
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that arc all nearly equal, It is not too much in error, then, to assume
that the d'; having the same absolute value also have the same eigen~
value, To this approximation, QN is given By

DM =_}:

(72)

Yl

where N(X) is the number of d, having some particular absolute
value, The corresponding average eigenvalue is X . This approximation
to (N} is similar to one used by Kirkwood and Fuoss in their treat-
ment of the dielectric dispersion,

(X)) is evaluated in Appendix III, From Equations (187)

and (189), we have

4
~ +3}-3 4
(}\) |(, 4 "(c+3) {(‘_4__ -6 - GQA(CH) + ') (C*‘)z }, {73)

= BA/Zh Do. (74)

where
once O(A) is known, H(A) and E(*}) can be found from

Equations (57) and (62). The distribution of relexation times is®

iy BNa(kT [ oy bles ) 4(3ce13) _ B(c+3)
E(T)—ms{m-z +3c+ 24‘27\(L'0‘l)—(c+|) T e+ )R (C*')J}- (75)

When expressed in terms of T , the variable ¢ is

=7/, (76)
where = g.an/2kT. (717)

N, 1is half the total number of elements in a unit volume of the polymer,

and is independent :f the molecular welsht, (For substituted poliyetbylenes,

‘Equations (75), (78), and (79) are correct only if W/m < T <« %n.
If 7< T/n or ¥»>mn, E(T) is zero, Because n is very large,
these limits can be neglected in the calculations for s(t).
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Ny is the number of monomers per unit volume,) The time 7, is a
function of both the tompsrature and the molecular weight,

The distribution of relaxation times is plotted versus /7,
in Figure 2, with logarithmic scales for both variables, The limiting

value of E(¥) for small T is

2
g (ot 8N (koT)
=2 390 T LT,
Em = =55 e (78)
As v increases from zero, E'w) rises slowly to a maximum at v = 0.l7,,

and then drops off rapidly. When T is large

v BN Y
E("’)—W (—;) TR, (79)

The next problem is to determine how closely the theorctical
distribution describes the experimental properties of noncross-linked
elastomers, We shall calculate the stress relaxation from E£77} and
compare it with the relaxation of a typical elastomer. One of the most
nearly complete experimcntal investigations [11] has been of polyiso-
butylene, and wc shall compare the theoretical results with the data
for thiz polymer,

From Equation (55), the stress relaxation s{t) at constant

extension € is given by

° (80)

11, R. S, Marvin, "Interim Report on the Cooperative Program on Dynamic
Testing," National Bureau of Gtandards, 1951; and E, R, Fitzgerald,
L, D, Grandine, Jr,, and J. D, Ferry, J. Appl. Phys, 24, 650 (1953),




o
01
S v - e

SOFSWeIXY W) WOTINTOS Jsmiled v 29
SOW]L USTISTNTER JO SOTIMTIISTQ TESTISI0eq]

‘t ‘S




37

The time t is measured from the inc.ant >f extension, To find s{¥’
it is necessary to substitute el) into this equation and integrate
over T for various values of t.

The calculations for st} are described in Appendix IV, and

s{t} s plotted in Figure 3, In the figure, the stress is normalized

to unit force at t=0 by dividing by

5(0)|€= 2 NonkTe. (81)

No explicit equation for slt)  can be given because the integration
is performed graphically,

Also shown in Figure 3 is the composite experimental stress
relaxatior. of an unfractionated polyisobutylene at 30°C {12}, The
average molecular weight is 6,600,000, The curve has been normalized
by dividing the original data by 10.4 x 106 dynes/cmz-unit extension,
The time scale for the theoretical stress relaxation has been chosen
so that the two curves coincide ati a normalized stress of 0,50

2.04 hours).

(7 =10
The experimental stress relaxation may be divided into two

quite distinct regions, One region includes the slow relaxation of

stresses less than 107 dynes/cmz-unit extension, This relaxation is

due to ths molecular diffus‘:» i eated in this thesis, The other region

includes the stresses larger *han 107 dynes/cmz-unit extension, These

forces decay very rapidly at 30°C; and have alrodt eniirely disappeared

12, The composite curve has been formed by superposition of the data
plotted in Figure 2 of R, D, Andrews and A, V, Tobolsky,
J. Polymer Sci, 7, 221 (1§51).
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107° hours after extension, For pelyisobutylene, this relaxation is
not experimentally observable unless the tempserature is much lower than
30°C, No attempt has been made to include the more rapid relaxation
in the theoretical discussion, and th: calculated curve may be compared
only with the relaxation at relatively large times, For this reason,
the normalization factor has been chosen so that the siress due to
diffusion is unity when t is equal to zero,

It is apparent from the figure that the stress decays much
more Slowly than is predicted theoretically, This result implies that
the relaxation times given by Equation (75) are not distributed in ¥

y a8 would be necessary to describe the experimental data for

w

polyisobutylene,

The theoretical and experimental stress relaxations also do
not agree in their dependence upon the molecular weight, Experimentally,
the time scale of the relaxation is proportional to F4&3 {22,13], The
magnitudc of the force is not dependent upon M, In other words, a
plot of s(t) versus ‘t‘-/f"13‘3 is independent of the molecular weight,
From Equations (77) and (81), it may be seen that the calculated results
are quite different: both the force and the time scale are proportional
to the first power of M. A plot of the calculated s{t)/M versus t/M
is independent or the molecular weight,

e are mora successful in comparing the predicted and exper~

imental dependence cn temperature. The only parameter affecting EYY)

13, T, G, Fox, Jr,, ana P, J, rlory, J, Am, Chem, Scc, 70, 2384 (1948),

b b s
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that can depend upcn T (other than tha temperature itself) is the
resistance constant &, , Whether or not the elements along the polymer
chain are spheres, & is proportional to #, , the viscosity of the
liquid composed of unpolymerized elementsﬁ. For nearly all unpolymer-
ized 1iquids, the viscosity is exponentially dependent upon 5/1', and

N, Presumably varies in the same way here:

G o n, = eA/RT. (82)

If this temperature depeadence is substituted into Equation (77), we

see that
-1 A/RT
« T e :

o-e

(83)

Also, from Equation (81) for s(0) , the calculated stress is directiy
proportional to the absolute temperature and independent of C, . The

proportionality of s(6) to T and of . .JR/RT

to correspond to
the temperature dependence observed experimentally for polyisobutylene
{11,12],

It is possible to find the dependence of the stress upon the
temperature without calculating s(t) explicitly, D(N\) consists
of a partial sum of the expansion coefficients d,d:~ of the potential,
Change of the temperature will alter the relaxation time ’/K of each
expansion coefficient but will not change its magnitude, This effect

implies that Sl is equal to scme function of A%  and not just A

alone;

n =00m). (84)

*For a discussion of the relationship between the viscosity and the
vesistance constants, see [6,8],
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From Equations (57), (62), (80), ancd (84), we obtain
(‘”-(f/mo"

st « T G(B)dB, (853
€ )
where the variable (@ denotes T/7, , and
e = @+ (86)

df
From Equatiors (83) and (85), it follows that a plot of S(f)/'T versus
tj.é-AiﬁT is independent of the temperature, The stress at t =0
is therefore proportional to T, and the time scale of the reiaxation
depends exponentially upon |/T , This temperature dependence satisfies
the usual reduction method [14] for relating the mechanical properties
of elastomers at different temperatures, and agrees with the experimental
resulis for polyisobutylene,

From the above discussion, it may be seen that the dependence
of s(t) upon the temperature is not related to the specific form of
the diffusicn tensor, On the other hand, the dependence of s(t) upon
the time and the molecular weight does vary with P. It would there~
fore appear that the general solution for £(*)  in Section IV may be
correct, but that the approximations in this section to find ) are in
error,

An important source of error is the assumption that the

resistance tensor of a molecule is the same whether or not {he surrounding

14, R, S, Marvin, E, R, Fitzgerald, and J, D, Ferry, J. Appl, Phys, 21,
197 (1950); and J, D, Ferry, E, R, Fitzgerald, M, F, Johnson, and
L. D, Grandine, Jr., J., Appl, Phys, 22, Ti7 (i851); see also
F, Schwarzl, and A, J, Staverman, J. Appl. Phys, 23, 838 (1852),
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fluid is polymerized, Furthermore, the approximation of @ to

[{we?

may
be inaccurate eunugh to change E'("r) appreciably, Both of these

approximations tend to make E(r)  too narrow a function of T, From
this point of view, the theoretical stress relaxation in Figure 3 may
be considered as an upper limit upon the rate at which the relaxation

can proceed,

It might be pointed out that the theoretical distribution of
relaxation times should agree much better with the extension properties
of a dilute solution of a polymer, In a solution, the fluid surrounding

each poiymer molecule is unpolymerized and &, is equal to &, .
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VI, CORRECTION OF THE MECHANICAL PROPERTIES FOR CHAIN ENTANGLEMENTS

From the previous section it may be concluded that the cal-
culated stress relaxation does not agree with the experimental results
for a typical elastomer, and that the primary reasons for this discrepancy
are the approximations used to find the diffusion tensor, To obtain a
more precise EY*) , it is necessary to evaluate the effects of
polymerization of the surrounding molecules upon the resistance tensor
p£ of a polymer chain,

Let us examine qualitatively the interactions of the chains
by considering a rotation around some azimuth angle Xj . If all the
other angles along the same chain are fixed, one part of the molecule
(on that side of the j-th bond containing the center of the chain)
remains stationary, The other and smaller half rotates around the bond
as a rigid, irregular rod, If the surrounding molecules are small (as
in a dilute polymer solution), the forces on the chain can bs calculated
from the resistance constant § of each element, Ewvaluation of these
forces leads directly to the diffusion tensor used in the previous
section,

In the unn.usticizcd polymer, however

, thc molecules are
entangled with each osther, The part of the chain rotatine around the
j-th bond carries with it a large number of surrounding elements, and
the resistance to the rotation is much larger than the corresponding
force in the unpolymerized fluid, If the effective resistance constant
§; of each element includes the viscous forces on all the chains wound

around that element, ¢, is much larger than £ ., Furthermore, if
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t€n , the number of chains caught on the i-th element is larger than
the number caught on the (i-1)th element, This comes ahbout because the
chains are free to slip off the end of the rotating molecule, As a
result, the effective C; are larger near the center of the chain than
they are at the ends,

We might summarize this dascussion by suggesting that the
diffusion tensor may be calculated in the same way as in Appendix I,
but with Q: introduced as a function of (.

We shall not attempt to determine the effect of the chain
cntanglements quantitatively, Instead, we shall assume some ad hoc
dependence cf §; upon L and calculate the corresponding stress relax-
ation, The purpose of this procedure is to find a simple set of
resistance constants correctly describing the mechanical properties of
elastomers, Once the proper &, are determined, they should be appli~-
cable to the solution of the diffusion equation for all types of external
forces, whether mechanical or not,

Let us assume that €&, is given by

(QOALP ign
5 = ¢°A(2M|-;)?, P2+l (87)
where A and p are constants independent of the temporature, These
diffusion constants are symmetric around the cciiter of the chain,
increase rapidly toward its center, and are a multiple A of §; at
the ends of the molecule, From Equation (14) it is apparent that the
potential as well as tne diffusion tensor is modified by this assump-

tion,




The new jD- , d,\, and O()\) are calculated in Appandix V,

If the function f(c) is defined by

(2p¢4) 4G (p¢3)

_(2;:#3
g ‘{ (x+ pre =

lc) = {c+3) L _r)]dx,

.{)) may be expressed as

VLtZ

erf ot A
a) = 3(pf')°(a9+5)f()

where ¢ 1is equal to T"/“r and
2 +)
v = eAd T/ (pr2) KT
The corresponding distribution of relaxation times is?

N (p+2) (kTP 48
3(p+l)3(2P*3)€.AaznP de

E(r) =

If T is very small compared with =, ,

P
N, (p+2) (KT) (= )(P") sl
Ip+ )G AP AT °

£ v) 2

If T is much larger than </,
3 2 -5
’ . NO(P'*‘Z) (koT) T = t
E0 = g eeaae () T

(88)

(89)

(90)

(91)

(92)

(93)

nEqaat.wnb \:u), (92), and (93) are correct only if w-/n €LY << TN,
When < ’r/nP’ or + e v,n, E'(Y) is zero, Treie limits

san o noglected in the calculations for s{t) .

LS
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From Equation (80), the stress relaxation is

(p+2)' N_nk Te (”-(é,)c 2 4R 4
el M (54)

Lro

s(t)

Two important results may be obtained directly from these
equations, In the first place, the temperature dependence of the stress
relaxation is the same as in the previous section, The stress at small
times is proportional to the absolute iemperature, and the time scale is
dependent exponentially upon I/T' . Secondly, 7, 1is dependent upon
the moiecular weight raised to the p+l power, provided that A and p
are independent of M. The form of this dependence corresponds quite
well to the experimental relationship that the time scale of the
relaxation is proportional to P113.

The stress relaxation of polyisobutylene may be fitted quite

accurately by setting p equal to five, The calculations for E(™ eand

s(t) when p is five are described in Appendix VI, From Equation (220),

4 . 0.04072 Nﬁ(k.T)zc"{ 7 320 0.36\ [c+3 V3
E.(T) = C.O.a nsA [\" +3)00/3 7287 +'(C+ l) {_3. (6 -(C+ 1)- (Cd-‘)z —(C*" ]}’ (95)

This distributicn of relaxation times is plotted againsi the logarithm
of 1'/11 in Figure 4, The correspcnding stress relaxation is plotted

in Figure 5, with the force at t=0 normalized to unity by dividing by

s kTe.
s(O)L 0.348 N,nkTe (56

Also shown in this figure is the experimental stress relaxation plotted
in Figure 4 (polyisobutylene for ™ = 6,600,000 and T= 30°) [12].

The exper imental curve is again normalized by dividing by
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2 ; : . .
10,4 x 10" dynes/cm“-unit extensicn; T, is chosen so that the curves

coincide at a normalized stress of 0.50 ( 7 = 104'07 hours),

The theoretical curve agrees with the composite experimental
curve to within 0,05 over nine decades of time, Only at very small
times after extension do the two curves disagree, At these times, the

relaxation is not produced by diffusion of the azimuth angles of the

molecules, It may be concluded that a set of diffusion constents given

by the rulc

5 g
: Len

_je.Ad
R LAYTI Lane (s7)

predicts a stress relaxation in excellent agreement with the properties
of polyisobutylene, The temperature dependence is also correctly
described by this law,

ihe molecular weight dependence predicted by these & does
not quite agree with the experimental results, In the first place, the
calculated <~ is proportional to the sixth power of ™, rather than
the 3,3 powsr cbserved experimentally, This disagreement is not totally
unexpected, however. We have sclected a value of p which corrects the
time dependence not only for the effect of the chain entanglements but
also for the substitution of 5 for O , The latter approximation
changes the time dependence of s{t) without altering the dependence
upon the molecular weight. Consequently, a p of five overcorrects

for M®, It A were independent of M, we might conclude that about

*he introduction of p also corrects for the approximation to N(A)
in Equation (72), and for the distribution of molecular weights in
the unfractionated polymer, Both of these factors change the shape
of s(t) without altering the effect of ™, and therefore tond tc
make the predicted dependencs of* =’ upon M too large,
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half of p corrects for the effects of chain entanglements, while the
other half corrects for the approximation to D, A more accurate
solution of the diffusion equation than is given here should lower the
dependence of 1{ upca M , and agree mere clesely with the exper imental
results,

The calculated stress relaxation depends in a second way upon
the molecular weight, 7he magnitude of s(0) from Equation (96) is
proportional to i1 , whereas experimentally it does not vary with M ,
One might suspect that s(6) is independent of M for an unplasticized
polymer because the chain entanglements act as temporary cross-links
between the molecules, In other words, the rapid motion of one part
of a chain may be entirely divorced from the rapid motion of another
part of the same chain, The stress at small times would then be inde-
pendent of the total length of the molecule, Only over relatively long
periods of time would the motions of the various parts of a chain be
related, During such motion, the sole effect of the entanglements
would be to change the resistance constants of the elements, Since
the stress relaxation is primarily a slow phenomenon, the treatment
given here may be essentially correct with regard to the shape of the
relaxation, even tnough it is not correct as a calculation for S(O) .

It might be pointed out again that the use of EZV) is not
restricted to a calculation of thc stress rslaxation, Equation (55)
gives s(t) corresponding to almost any €(t) whatsc..or, For example,
we may use £{v) to compute the stress required for a constant rate

of extension., The only limitation upon Equation (55) is that de/dt
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must not be too large, In general, the published data for polyisobutylene

are internally consistent, and the E{¥) which gives the proper stress

relaxation also will predict the correct response to other types of

motion,
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VII. CORRECTION OF THE DIELECTRIC DISPERSION FOR CHAIN ENTANGLEMENTS

The diffusion equation for ¢ (Equation 20) can give the
response of an elastomer to forces other than those accompanying
mechanical extension. The only restriction upon the equation is that
the molecular motior must consist of diffusion in the angles
8.4, %, ,%,.... X, ., . The diffusion equation is applicable to the
dielectric dispersion of peclar polymers, for example, if the potential
is changed to

twt
Ve=pefee (98)
F. is the amplitude of the local electric tield of frequency w/2w
and is the total dipole moment of the polymer molecule,

The diffusion eguation for this potential has been solved
by Kirkwood and Fuoss for a polymer in which the dipoles are attached
rigidly to the atems making up the molecular chain, Polyvinyl chlcride
is an examples of such a polymer, Their calculation is intended to
apply to a solution dilute enough so that all chain-to-chain entangle-
ments may be neglected, Consequently, they use the diffusion tensor
derived upon the assumption that all the resistance constants are equal,
The substitution of D_ for D and the approximation to (X)) given
by Equation (72) are also employed in their calculation,

The results of Kirkwood and Fuoss may be expressed as a distri-

bution of electrical relaxation times G(7), For a perfectly fractionated

polymer, this distribution is given by

_ T
G(Y)_(Yf-’r‘o)z . (99)
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The reduced dielectric dispersion H(w) at frequency u/2W is the

imaginary part of

_ ”gm_w_
-Qw) = ) Tt (100)

By substituting G(¥) into this integral, they obtain

Hlw) = — {{*‘-*)%*-XZ+W~!]- (101)

(1+ x%)*

The variable x is equal to ww, , where 7, is the relaxation time
defined by Equation (77).

H(w) , divided by its maximum value at X = 1, is plotted
against the frequency in Figure 6, Also plotted in this figure is the
audio frequency dispersion of unplasticized polyvinyl chloride [15],
The data were taken at abcut 1C0°C, The frequency scale of the thicoret-
ical curve has heen chosen so that H,,, coincides with the maximum
of the experimental curve (7, = 107299 seconds),

The experimental dispersion exhibits a very broad maximum
not fitted by the theorctical curve, We may conclude here, precisely
as for the stress relaxation, that the calculated distribution of
relaxation times is not broad enough to correspond to the experimesntal
data,

t is not surprising that the results of Kirkwood and Fuoss
disagree with the experimental dispersion of an unplasticized polymer,

because their theory applies only to a dilute solution of a polymer,

15, Thke composite experimental curve has been formed by superposition
of the data plotted in Figure 4 of R, M, Fuoss, J. Am, Chem, Soc,
63, 369 (1941).

i
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From Section VI, however, we have available a set of resistance constants,
€, = COAIS » that describes the effect of the molecular entanglements
during mechanical extension of an unplasticized polymer, Since the
same entanglements occur during the application of an electric field,
introduction of these resistance constants into the Kirkwood and Fuoss
theory should give the correct dielectric dispersion.

The solution of the diffusion equation for an electric field
has been recalculated using the modified resistance constants, A summary
of the computations is given in Appendix VII, The new distribution of

electrical relaxation times isn

Glx)= mvﬂ, i (102)

where 7/ is given by Equation (90}, H{(w) , divided by Hay, is
plotted in Figure 6 against the frequency, with *;' set equal to

10-1.99

seconds so that H, .  coincides with the maximum of the exper=-
imental curve, The corrected dielectric dispersion is much closer to
the experimental resul: than is the uncorrected curve,

It might be pointed out that the dispersion for P equel to
five is not symmetric about its maximum. This suggests that the Kirkwood
and Fuoss theory has not teen corrected properly for frequencies less

than ZW/1Z . The stress relaxation at corresponding times is too

simall tc measure accurately, and the correction is not applicable in

ﬁEquation (89) is correct only if ™, /n<< T << AN . Equation (102)
is correct only if ¥/ nP™ T << T'n . These limits may be
neglected in the calculations for H(w).




52

this region, Over the thrce decades of frequency larger than 2TT/":,’
the theqretical curve is never more than 0,08 below the experimental
H(w) . This precision is as good as can be expected because the value
of p was determined from the mechanical properties of a different
polymer , A more accurate check orn the theory would be the calculation
of the dielectric dispersion from the stress relaxation of polyvinyl
chloride itself, With this reservation, the modified theory is an
accurate representation of the electrical properties of polyvinyl
chloride,

One way of summarizing the dependence of H(w) upon frequency
is to gire its maximum value, because Hpmas decreases as the width of
the dispersion increases, For polyvinyl chloride, Hiay is about
0,10 at 1060°C. 1In the Xirkwcod and Fuoss theory, Himax 15 0,285 (for
a fractipnated polymer )., When the correction for the chain entangle-
ments is introduced into the theoretical derivation, H,_;. is reduced
to 0,143, a value 2lmost as low as the experimental figure,

The predicted temperature dependence of H(w) also agrees
with the experimental results, For both of the theories and faor
solyvinyl chloride, the frequency of meximum dispersion is dependent
exponentially upon I/T . The shape and magnitude of HI{w) are
independant of T, Actualiy, for polyvinyl chloride there is a slight
change ig Hpax @s the temperature ic raised, but this effect may
be due tp other types of dispersion occurring primarily at higher
frequencies,

From Equation (90) we can show readily that the calculated

. . . . +'
frequency of the mnvimum dispersion is proportional to (l/M)P
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Joaseguenily, ths fvoqudngy of W . 'S proportionsl +o (”743 Wl
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¢ i3 five, while it is pr?p¢;tion&1 ta MM for the Kirkvo.d and fuces
.hoory, The only experimunt:l datr on tae variation of ?4hu3 with M
z ¢ for polyvinyl chloride piazticleed with 20% dipheryl {137, For this
watirial, the frequency of murimun disporsion saems to vare wilh :{M, .
vireeing with the Kirkwood and Fuoss theory, The viredic' ol viciarvion
caeeesponding to & p of five nevtainly dees ngt it the experimental
fata, It might te pointed ont hewever, that the plasticization of
polyvinyl chloride increases H,,, from 0,10 to about 0,17 and radically
decreases the vidth of the dispersion, The value of p necessary to

describe the frequency dependence of H(w) would be quite a bii{ iess
‘than five, It therefore appears that the predicted frequency of H, .x

for the plasticized polymer would vary as a power of I/M less than

six but more than one, There is some indication from the experiments

of Fuoss that this may be the casc, Until data are available for an
unplasticized polymer, however, it is necessary to conclude that the
theoretical molecular weight dependence for a p of five does not agrie

with the available experimental results, .

In summary, the resistance constants which give the pro¢r:

time dependence of the mechanical propertiecs of polyisobutylene mf“

also be used in the diffusion theory of dielectric-dispersion, ﬂgﬁ
correctgd;Qisperaion agrees in its frequency and temperature dzﬁmﬁanca

with experimental results for polyvinyl chloride, bui dozc nc%/;jye the..... .

proper dependence upcn the molecular waight,

—

16, R, H, Fuoss, J, Am, Chem, Soc, 83, 2401 (1941),
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VIII, SUMMARY

If an iveompressible noncross-linkéd polymer is extended in
such a way that 2li parts of the material are strained equally, the
velocity v of the molecules relative t> each other may be expressed
in terms of the rate of extension dG/diz (Equations (4) and (5);,

The configurations of the molecules at uny instant may be specified

for our purpose by ¢, the probability of each configuration, If the
temperature is above the polymer's glasy transformation, the bond lengths
and bond angles are constant during exteasion, Then the only variables
on which £ deponds are the twn directicnal angles of the center bond

of the molecule and the azimuth angles aiong the chain,

If the molecules are not crose-linked, the intermolecular
forces during extension are viscous in nature, The force on a single
element (one skeletal atom together with its side groups) is propor-
tional to the velocity of that element rclative to the surrounding
material, In othor words, the force is equal to &, (V-w;) , where
€. is the resistance constant of the i-t! element along the'chain;
¥; 1is the velocity of the element relati: to the center of mass of the

molecule, By substituting these forces into the equation of continuity

for ¢ , the diffusion equation is obtained:

VD[ Vg + g OV/LT] = g% (20)

The diffusion tensor E? may be calculated from the ﬁ; by the method

e -

of Kirkwood and Fuoss (Appendix I). If rotation of the bonds around

their azimuth angles is completely unrestricted, the potential V' as
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=f3-—2;5;lpf-2*f)’ (14)

where p, and =, are the cylindrical coordinates of the i-th
element relative to the center of mass of the molecule, We may con-
clude that the molecules change their configurations by diffusion under
a potential proportional to the rate of extension de¢/dt , For a
given extension, the diffusion cquation can be solved for the probability
of each molecular configuration,

The rate at which energy is supplied to the polymer may be
(Equation (27))., Since this energy is also equal tc the product of the
external stress and the rate of extension, it is possible to calculate
the stress required for a given extension of the polymer, A linear
relationship between the stress and the strain,in terms of a distribu-
tion of relaxation times E°(Y) , may be obtained from a =iagle solution
of the diffusion equation, The general method for finding EKT) is
summarized on page 31,

Without solving explicitly for the distribution of relaxation
times, it is possible to derive the dependence of the stress s(t)
upon the temperature, For relaxation at constant extension, a plot of
the calculated s(t)/T versus tT(’.“A/R-r is independent of the
temperature, This dependence agreces with the experimental behavior
cof high polymers such as polyisobutylene,

To find s(t) explicitly, it is necessary to determine the

o
diffusion tensor [? and solve for E(¥) . To get a first approximation
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to D , it may be assumed that the resistance constants §, are all
equal, This approximation is equivalent {to assuming that the motion
of the polymer molecule is the same whether or not the surrounding
material is polymer ized, The slt) calculated from these 5; decays
too rapidly in time to fit thc experimental stress relaxation of poly-
isobutylene (see Figure 3j. Moreover, the predicted dependence of s(t)
upon the molecular weight fails to agree with the experimental results,
These disagreements are not surprising bhecause the calculated

E() applies only to a dilute solution of a polymer, In order to
determine the mechanical properties of an unplasticized polymer, it is
necessary to take into account the chain-tc~-chain entanglements, We
make the ad hoc assumption that &. may be set equal to 'f,l%lp
where A and p are constants, When p is five, the shape of the
theoretical stress relaxation agrees quite well with the relaxation
of pclyisobutylene, Over nine decades of time the maximum error is
five percent (see Figure 5), Thus, it is pcssible to find a diffvsion
tensor which gives the correct time dependcnce of the mechanical prop-
erties of the polymer, The dependence of sét) upon the molecular
weight is not correctly described even after the resistance constants
have been changed.

The diffusion tensor which gives the proper stress relaxation
of a polymer m., also be used to find its response to other types of
forces, The only restriction upon the applicability of 9 is that the
force must result primarily in rotations of th: azimuth angles of the
molecules, One force of this type is an electric field of audio

frequency, Kirkwood and Fuoss have calculated the dielectric dispersion
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of polar polymers by techniques from which the above methods have been
derived, However, they use the diffusion tensor applicable to dilute
solutions, It is possibie +n carry through their computations with
the new diffusion tensor descriptive of an unplasticized polymer, The
results may be expressed as a distribution of (electrical) relaxation
times given by Equation (102),

The corresponding dielectric dispersion is pletted in
Figure 6 against the frequency, together with published experimental
results for polyvinyl chloride, The agreement between the theory and
the data is quite satisfactory, It is believed that the agreement
would be even better if the diffusion tensor were derived from the
stress relaxation of polyvinyl chloride itself, rather than polyiso-
butylene, The predicted temperature dependence of the dispersion
also agrees with observation, The theoretical variation with the
molecular weight does not agree with vhat experimental data are avail-
able in the literature,

It may be concluded that the ad hoc set of resistance con-
stants correctly describes the time-dependent properties of a noncross-
linked polymer at temperatures above its glass transformation, except

for the dependence on the molecular weight,

e
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APPENDIX I

DERIVATION OF THE DIFFUSION TENSOR

The resistance tensor for a polymer molecule has been obtained
by Kirkwood and Fuoss [7]., Their derivation is reproduced here,

The Cartesian coordinates erected at the center of mess of
the molecule are the unit vectors e, , ¢, and g,, with ¢, in the
direction of extension, The elements of the chain are numbered from
| to 2Zn; @, denotes the unit vector in the direction of the bond
from element -} to =lement k, If the cnain is very long, it may be
assumed that the center of mass of the chain is always at its average
position, the midpoint of the center bond, Then the vector r, , which
denotes the position of element k relative to the center of mass, is

equal to

k
/Q{é_g“nn +Z 9:‘)] k)n-b-l

.’.’k=} J=inihd (103)
‘ a(' a . ksn
- .—2—"'"" 'YZ ej.ls <
j:kﬁ'l
where a is the bond length, The angle © is the angle between ¢, and
@n.y , ¥While @ is the angle between the plana costaining e, and

a,,, and the plane containing €&, and ¢, This definition of ¢ may

be written as

¢ = (g,,8)e, ¢} (104)
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In the same notation, the azimuth angles X, to X, are defined by
X‘r\u = (9,.,1 ) ghn )(g'nn b ] ?3.) (105)
\
X, = (&> 2eadlen, s 8s) (106)

X =

L]

( kel ’gk)(‘.}ks Qﬂw) 2n~t 2k ? h+2
{ (@k 4 g‘k.l)(gk‘l ’ g’k-.z)° =12 k 2 2 (107)

The supplement of the bond angle, n , is the angle between any pair

of consecutive vectors @, and @, = . In carbon chains, n is approx=-
imately 71°, For the purpose of simplifying the following caiculations,
however, n will be set equal to 90°, Tt is believed that no serious
errors are introduccd by this difference,

The velocity of the element k relative to the center of

gravity is
no= 006 * ZfQ (asrgh ke (108)
jEnes
where ‘Q‘J = 9-;“.{’3 (109)
and Q°=‘(Si“¢)é§.*(c°5¢)é§x * (sin@) P Sy (110)

If the molecule is moved through a quiescent fluid, the force on the
element k is &, v, , and the torque at the position of another element
vis § (n-n)xw . The total vector torque acting at the

position of element U\ due to the forces on all ths elements is

2n 3
L -l .

.= ) Ck(r,;r;)x i "Z gk(rk—ri)x?k‘ L e (111)
‘(‘=i-"| k= net

The component of T, in the direction of @ is the scalar torque

T

[}

associated with the angle Xi . Substituting Equation (108) into
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Equation (111) and rearranging after dotting with @, , we have, for i zn+i,

an-|
T=T o= L 2% +eulh, (112)
y=2
2n
ekg'j.-ujk' Q'l 321
kujol
an i)
/9’.3-': Z‘:ke"\' Tje 2 —2 Ckep!;jr@,- hetd jei-t
where ke L koot (113)
o] jsn
i 2n S
gnd elo = Ck 9-"', .\éiok - Z Ck 9”1' !iok N (114)
haie krnet
The dyadics §:jk are defined as
p O — (rk-rj‘){r.,—r;)I- (55 0 ne-x) (115)

vhere Iijzg: . The dyadic ¥, denoies )’;3.‘ with v identically

zero, A corresponding result may be obtained for the lower half of

the chain, The torque T, associated with the angles © and ¢ is the

total torque on the molecule referred to the center of mass:

2n -y .
To= foerlle® Zz £ei Xy (116)
3=
2n
DI 2Rl ¥ T
k= j+
where eoj':‘ P (117)
N . :
= fk “ojk 3 Js 2
k':l
2n
and Poo = ) Bk (~k'~k¥—!krk)‘ (118)

=
n
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The dyadic Z‘cj.". denotes :‘;jv. with r, identically ze¢rc, All the

terms of the resistance tensor p are given by Equations (113), (114),

(117), and (118),
It is prohibitively difficult to find the inverse of 2 and

thereby to obtain D= kj,g" . However, the diffusion tensor may

~1
be approximated by k T(Z) , where £ is the average of the resistance

tensor over all possible configurations of the molecule, Substituting

Equation {103) into the definition of ¥, We may show that

oS [1- (oo |

i .o, = sl
g“ ?‘.3\‘ ~j 1
0.

kz i+t

ket (119)

The value of (g %¢) 1is1,0,1/2,1/4, 3/8, 5/16, ... for q equal to

i,i+41,842,... , and approaches 1/3 as q-i becomes large, Without

much error in 5, (‘51'9\)2 may be set equal to 1/3 for all q. Using

Equation (113), we then have

2n
[ 2 Y 8 (k) i Znel
e 3 : k:i*l
(i \ i
=54 2 2 i p '—‘(. feay (120)
_3_ ‘-L (‘;k(l ). <
k=
The value of L., 1S given by
5 2n .
Eoo &= %z cu e I I- s (121)
k=1
Using Equation (103), and neglecting the term —;- Q. , 5 We have
2n h n n
s g2 N A :
Z Lol T, = @a Z L. g“gi e (122)
k=1t la= %:kﬂ rrhe
so long as
(123)

gk = i2r\-n—\\ )



e

APPENDIX I 62

4
From the fact that .9, = gqg )

3
5 =45 € (a1
B..=%59 % Gl )I. (124)
k=t
Also, it mey be shown that
5. =p.=0. (125)

The components of the diagonal diffusicn tensor are readily

found from the average resistance tensor, and are

Do = Dus = D, hz/4a(*‘) (126)

siid Ijij = Donzgg/2<3(i), (127)
where 0, = 3kT/ £,o'n (128)

2n

PECSOLNS i3t

k=iel
and 'jtt)E - (129)

z (i_l‘)f’k-/dn’ ven

k=)

If it is assumed that £  is equal to §_, \](i) is approx.

- H 2 . -
imately [n - iL-h!] /Z « The nonzero terms of the diffusion tensor

are then
QQG: D¢¢= D'/Z (130)
- Cm 172

and b= Blt-1== 1. (131)
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and the eigenvalues and normalized eigenfuncticns of this operator are

2n-t — -2 2
A= Do{%“ﬂ*')*;[""""] "‘a} (133)

+i)(L-1m ’/2 gl . imd ant im L.
Vi‘—‘[(” (L1 .l)!] 2m) Ffzm (cos 6) e X e

e (134
Aulf+im ) al > (134)

LY
where E,_ (cos ©) are the associated Legendre polynomials.
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*
EVALUATION oF d,d,

From Equation (70), d,‘ is equal to

2 2\ *
dx=~/ﬁj}: (P;—Zzg)“ﬁéq (135)
L
when §,= &, Using Equation (103) of Appendix I and neglecting
%, » ve find that
ln - -
Y ren® Z - g, + 2d Z E 2nei-)0 8, (136)
tz} =2 k3j yxne2 Kzne2
Vz‘"rl T—' 21 J
z Pald
and / F Z [__(J l)(e ‘a )(g_‘ ak}+2a Z E (2n+1- J)(e Q)(-, k)( 37)
1'.-:_1' 172 k= j=ne2 k=nez

2 .
From p,-22!= ¢~ 3#] | it follows that

(A ) G TJ-— \
) Pe S p™
d, = 2a Z Y ) 1_(2'1*'-31 ij ) (138)
F2 k=j j=mz kzns2
(x) A
where =/s f [o; 20— 3(g 8 ey 2] % dg. (139)
; > o 2 :
In order to find ij , it 1is necessary to express gj in
terms of the angles €,&, X,,... ,X.zn_l. From the geometry of the

molecular chain, it may be determined that
L\(el¢l>.A(nﬁxnﬁl).{.\(r\’xhvz)."’./hﬂ\(q')ij-l).g;} J?I‘I-#l
a, =
) \C\{S)QS)'.{\('\»XJ'A('\)Xn-.)'“"/:,\("UX_',)";_; jsnp {120)




APPENDIX 11 65

( cosBcos ¢ -sing Sdnecasg“

"cses‘mdl) c.'.\5¢ 5""95'”¢ ’ (141)
O cos@

where ACK):

~

]
-
'
A,
3
(D

It will be assumed that n , the supplement of the skeletal bond angle,

is equal to 900,

For ;> n+! , substitution of Equation (140) into Equation

(139) gives

o v

» @, o) ned) hen) (W (Ke) j=») L
P JF,JUg PR g SRVEEEY) :...::,)(J tK}S‘j\.C"CLa (142)

where K is the dyadic g¢e and the fourth-order tensors P" /_,(‘1’

3 3

and 3)“3’ are def'ined by

Jupes = N6,8), N ¢ (143)
] _
e AL BAICRAVPS (144)
(a)
and 9-(:\«8 = /.:.\ ('Z)X'i).(P :l:ys J (145)

The scalar function U of any dyadic T denotes

U(M=T,+T,-20,;. (146)

~ 1 '22

The double dot product is defined as

e (e.\. (y)- = (r)
(B R gpy: Z f"uvg P oepes » (147)
4y, T = @
and [/.* =l ],,P Za [ acps e (148)
€,
Substituting for V; from Equation (134) of Appendix I, we obtain
~(A) » na ne -1 (kat) 3et
P( :U(l“.”)' P’I( s N( ”-...:Pj(k s tl(k): N :...:f:l(’ ):K

Jk 2n-t

Xﬂg ﬂg , (149)

iy s
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b4 2w
where g("jm) = J_—i-;f f U(g;w) Y;"‘(e,¢) sin@dedg¢, (150)
670 ¢vo
rzu- ‘
Q) \ Q) -im
m = z—‘l’?) ,t e 1‘(‘11“’ (151)
[+]
) " X
( { (q) -t+m™.
NV= o 3¥e ™, (152)
(]
. B e 5
[g (},‘,( ))] ‘ = f.f(‘.).' A z)—?p —2/“:5(3,-::‘5 s (153)
ol
Ym'(e ¢) - [(2"*')(1""‘.’)! ]’/2 P“\'(COSG\‘ e‘"‘o¢ (154)
g, W 2 ‘ ‘
i 4 w(Le) m)
As the first step toward finding PJ:A) s it is possible to
evaluate the product
L= NN O (155)
Integration over X, gives
( y ' ! ‘ -1
N% [S"‘ Ao+-2—gtn/"\* +Tsm (\-]I' <156)
% 1 1
where /~\°: -ee, and
A= .6 re8 268 /0 Fee /. (157)

By substitution iato Equation {155) and contraction of the dot products,
we find that®

J-2

o, TT Loy of, @ 00.,]

9 el

>{ [ (l); €€ _(')u. e,8 + (O)k (a):m el 93] .

ket

L =)

(158)

StE,qua.tions (158), {164), (165), (171), and (233) may be proved by induction,
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’ o ] -4 -1
where (g , (), and (g denoto S, (Sm\-f gmﬁ.) , and (S:"%_gh‘i VT,
respectively, Later in this appendix, (2).,‘5 and (27('b will also appear;

2 -2 2 - .
they denote (Sh\+ S,..%) and (S,n{- Sh:.)/»/:'l , respectively, The

quantity ¢, defined as

.
¢ = Z (')q's (159)

is the number of mq that are xi for q2k . L is zerc nnless ail
the m, are O or | . m = %I and no consecutive m_ 2ul m «re
1 & I 3 8 1’4'
zero simultaneously, If L is not zero, its absuvlute value depends cnl
Y = ’ p \'g
upon ¢,

)

, o . .
The next step in evaluating P~ is to find 1" and its

double dot products, From Equations (144) and (151), we may show that
MY is the sum of MY and MY, where MY is symmotric under
transposition of the first and third indices and under transposition
of the second and fourth indices, whereas Iﬂ?‘ is antisymmetric under

either transposition, From the nature of the g function, it is pos-

sible to show that only the symmetric parts of rj‘*’ and L contribute

)
to ij H
) , —"r Zn-1\
ol - oy m-). (ne2) . (k..). : )
i =U(M) oM | | | o) (160)

b 97§

The value of I:’?“) obtained from integration of Equation (181) is
| | o ,

MY = [AA+Z AN+ AN, ] 5.,\+%[/~\./.\., +AA ]S

1 A A 1C L 2, -2
+3 [/~\- A+ /~\°l_,,] UMC FAY A*Sm‘\r -4—/:\_ /:\_gm%.

\
L

A (161)

Rearrangement of the terms and subtraction of the antisymmetric part
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n (C\) .
give f;’]:‘ , Which may be expressed as’a

() “ g + E_ _Fe)(0)
[l‘ﬂs ].,Q:s Lav B + (Cuy ?‘ e fps )% (162)
@, @ /o -0y
‘@ ) o), 8Y=L[ o) @@
where 6 :? (2) -@ 2 s < T( q 1 q |° (163)
(.)1 w o "y -2y (2)\,
C=(ge +e,e,)2, D=¢, e, vee, E= gjg”o.ndf: ee. P:\:'\) is zerc

; ; . ), Mg
unless m, =0, +1, or +2. Also, it may be seen immediately that l‘j:%: f‘j}'
is zero if either e O and Myoy = *! , or vice versa, Hence, the total
hep k-1) .
product f_‘ﬂ: U I‘j: (except perhaps near its cnds) may be

diviced into a set of scalar products of the form

3 (99 (gr2) v) (gere®)
BY: M VT M3, & AS

-~

> where lma‘l = lm%..rul =2 2
and all m, in between (there being v of them) have the same absolute
value 0, 1, or 2, Each of these scalar products may be contracted

separately, to give:
(: ) L(a.vvr) (g+rer)
BW e LY et I S AY

- %( '2) (2)( )“(O) et (O) i (2)”#"

et O Ml My 0yr2
= <\ —':’.( \ (2) (')., (1) (CRRN (')1,w- (‘)‘tw( ‘V'" m,‘“i=|,?‘) :
|
L) @ @ ™| =230 g

The connection between the [, and L, can be expressed as

the product of L, with the {1, back to Q(k""') s Where k-r-1 is

*Note thet the indices in the right side of Equaticn (162) have been
transposed from their order in Equation (144),
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the largest integer such that |mk_,_.|: 2 , The nonzero values of

this product are

{h-v 1) (k-v). (h-wret)

_B -P:]s 'Us "":mi '\:‘::
W roos ‘
(e L@y O, Oy (00, 1, m, =0, 30
| N A U
—\,_'J(_ 'l') (Z)k-v.l U)&-r(‘)kue!(‘)k-vd"' (I)k-l (l)ki m, =| [ r>0
2= ¢ (165)
Where W, from Equation (158), is
s
- j-\\-d’-’ | T ¢ _ I, i '
W =1 (3) ()., (W= (.0 O, ]. (166)
%:kol
From the definition of /-:M in Equation (143), it follows
that
cosze—% o 5in26
U(#m):~% o ) o ‘}
- sin 26 0  -cos26- 3 (167)
Substituting U(j#”) into Equation (150}, we find that
N o [ [+] —2_ 2 ..3_ ! (13 .
U(':l )= gm° gg §+ f?g).t’ + 2 ;O‘d JZOH-I Sg EI ' (168)
o o«
Where Gz"g,g,'*-gz?,.’ H: glgl—G]?J’ :].—: ?|§;+9J§|.
The numbers Q_, are the expansiun coefficients of sin260 in terms of
the Legendre polynomials of cos@ {17]:
«in26 = z Q. B(Cose), (169)

odd «

17, W, E. Byerly, "Fourier Series and Spherical, Cvlin‘'rical, and
{ Ellipsoidal Harmonics," Ginn, 1893, p, 183,

) &
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i with a,=37/8, and
_ (t=2)a+2)(2x+5)
Qoaz = DA sHZa T O (170)
The connection botween U(M®)  and the T, can be expressed as the
L] r*-) S
product of Y(M™) with the M, up to AC? , where n+r+l is
the smallest integer such that |m__.|= 2 . The only values of this
product which are not zero are
" (net) (n,r)- (neres)
Q) M 0T AT 2
-]
/ = (2),-...’ Sv-n° ,Q:O, r=0
3 v i L)
7_§(~£—) (0)“(0) (o) @, L, - £2=2,v3\
= ; o
7? (2)hn gmo 2‘2 » r=0
! \v ] ¢ o (-O T B ~
- (_—2-101 J22H (')vm(i)mz”' (I)nor-l(')"" uJ""" a’“.' gad 2w | (171)
The above connection formula completes the determinaticn of
A >
E-’(h' . For a given % , %k may be evaluated by substituting £,
me , aud the m% into Equations (164), (16%), (166), and (171), It may

be seen from these equaiions that Pj(:) is zero unless, for 3 k2 hat,
1) m,=0

2) mq°=0 gor g €n

3) S (D, + Sz(o),m ¢
8) |mgl=0,1,002 gor reisq < k-l

5) (;){1(0)?'4- (0)1(1)1__, -0 gor n+l&q¢ k-2
8% (O, O+ (D (D + (D, @) + (2, 0) =1

(l)hcl = ‘

oad
2

7) !m‘\,l =0 orl jor ks%s j-2

8) (9. =0 H°F keq€ -3

s) fm_ =1

3-!‘

10)  my=0  fer q ="

e e e e
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Corresponding selection rules occur when Js¥<srm

After %20 has been determined, d, may be found from
Equation (138), From seleciion rules 9) and 10) above, it is apparent
that there is at most one nonzero term in the sum over j , corresponding
to the largest j for which hhjlzl . The other selection rules permit
more than one nonzero term in the sum over k only if there exists a n

such that ‘m |=‘m%02|=...= lm‘\“"|= |o {m%’ra" =0 » and q is the

‘1# )
largest integer for which hﬂllz 2 , For this case, there are r nonzero
terms in &, . It may be shown that the cross product terms in d,d,

A) 2) . N N ’ . .
( ei %:, with k # %) contribute nothing to £2(X\). Furthermore,

(N )
all of the squared terms ek Hk are ejual under these circum~-

stances, so that we obtain the correct f)(X) if we use

A 2 ~(A) AN
dydy = 4va' (o) B (172)

The factor v is present only if there exists a q satisfying the
criterion above, Since r changes QX very slightly, it will be
neglected in the later calculations,

From the equations for F%ix) , it may be seen that dkd:
does not depend explicitly upon the exact values of the nonzero Mg
but rather upon certain functions describing their number and relative

positions, In order to express de; succinctly, let us denote by

M the number of My between m,., and m, that are equal to zero:

e Z(O)

7! (173)
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Similarl Y and € denote the number of + 1's and +2's res ectively:
Ys P Y

k=) k-1
YE) Wy, and €=} (2. (174)
qzn+! ctsrul
Also, let o, , and ¥ denote respectively the number of sets of

O's, +1's, and +2's between ™, and m,_, , where a set of O's, for
example, is an uninterrupted string of one or more ™mq having the value

zel'o:

« =) [0 @] + O, (175)

=) [(')q,-(')‘i,(')ﬁl + U (176)

¥ = @), - (2, (2) e
2% L ] (177)
Finally, let & be defined by Equaiion (159) above, Then d d’  depends
. i
only upon d,(S,U,/A,Q,E,O', and ), and upon Jt", im.\..|,lmk-t‘,
and |m,| . As an example, let us choose £=m, =0 | 1If dkd:

is not zero, it is necessary that Im.. =2, m=0, and imk*'
Mso, m,=0 , and |m, |=i{ . For this case, Equations (164), (165),

(166), (171), and (172) give

2
‘z) () (3 (178)

where j is the largest integer such that mJ.;éO. Values of ,Q, |mh‘, 3
|mk_\| , and |mk| other than those chosen ahove givc the same dependence
of d,d7 upon «,8,%,p,», % 0 and j, but with a multiplicative

constant different from 16/9,
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EVALUATION OF ()

From Eauation (72}, (M) is approximately

QM =S5 N(f)d;d; ’ (179)

where N(X\) is the number of dx havirg some particular absolute value,
and % is the average cigenvalue of thaese C),\‘. From Appendix II, the
absolute value of dx depends only upon 2 > Im,.,.i, |mk_'| ) and Im.‘l,
and upon & , 0, ¥, p, »,€,0, and | . Hence, N(X) is the total number
of nonzero C\x that may be obtained by rearrangcment of the Mo, vwhile
keeping ,2,|mm'|,...., j constant, The calculation is simplified

somewhat by introducing the variable s in place of {; S 1is equal to

the total number of My from m_ up to m.

;o1 » inclusive:

SE [-n-p-Y-€-]|. (180)

Ik

The dependent variable w will be used to denote p+ Y+ €,

As an example of the method for finding S1(N , let us assume

that = m

=0 , and thus that |m_,,

t =2 H hk=‘9 H and Ih\.n!zi'

Evaluation of N(X) may be facilitated by the following theorem:

(87

possible ways of placing A indistinguishable objects into B distinguishe

there are

able sets with at least one object in cach set [18). DBctween wm, . and m

L]

18, E. Ising, Zeits, f Physik, 31, 253 (1925), Foctnote 1,
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there are thus
0&3( -l)( )

arrangements of the mg into their sets. The factor 2% s the

number of possible arrangements of the plus and minus signs of the Mqe

It is also possible to show that there are
¥-1
Y
different ways of arranging the order of the sets, keeping |mm||=2\
m,., =9 , and with alterrate sets fcraed of +2's, Finally, there are
2 olety)
arrangements of the +1's and O's between m, and m; , keeping (0) (o) =0,

m.=0, and !"‘5-;!= I Comhining these results, we have

NG =275 (L )(5’-1) gy | piedy B (181)

The additional nouw~r LI twc zppears when both sides of the molecular

chain are included in N(X\).

From Equation (133) in Appendix I, the value of A is
2n-}

T = e e
)\—qu—z [l I |] m (182)

when =0, Changing the summation to an integral:

f(\)+4€) d(q.~") Fa J(q, n)
Reoflth [dad g ey ), (ae2)
bb-n* %--\:w
= nD, [a'n+(4f+0)(h W= s)]
or A=

(rewr)(nw - %) (5d)
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From Equation (278) in Appendix IS and the above results, it follows
that the contribution to $2(N) for L=m =0 is

2 2 2%, 2peVe3ter-2y
[QL)\)]Q‘O = 3—‘ %_ 4(h-w-:) (_-;_} I)

mh_'-o q',s,,;.,D,

§ooe, ¥ -1 AV RV SRV = (185
X(EIDEDEDEDI), .

where @ =¥-«, When the sum is taken in the order @ ,S M, \), €,,
and ¥ , the limits are approximately s/2 ¢« c¢s, O€ S&n-w;
xsp&n-d-€, pedgn-f-«, rsfsn-v, Cexgv, 0gvgn/2,
and o0 + (4§+)(r-w-1) ¢ M(n-w)(n-w-3)/nD,.

If the molecule is very long (n>1! ), the summation may be
evaluated quite accurately by replacing the binomial coefficients with
their asymptotic expansions for large numbers [19], As an example,

the first sum is
T, ool
Z ("2') (:cr-l g
a

with limits s/2<o ¢ s and 0"s(h—w-s){[)\(n-W)/hD,]-(4§+\))}/r\.
By expansion of the binomial term for o near 2s/3 ; the sum may be

replaced by

-30)°
fhl&exp[—g%&— Jde.

This integral is approximately 1/3, provided that

3(n-w)[ T (W) - (49+9)]

s ¢ . (186)
2n{l + %[;%a(n-w) -(45+]}

19. K, Jeffreys, "Theory of Probability," Oxford, Oxford University
Press, 1939, p. 50,

——— e
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In this way, Equation (185) may be evaluated by a sevenfold integration,
The result of the integration is the partial contribution to Q)

for L=m__ =0: )

[ﬂ()\)]e", - rja_ga4n4(c+3§‘{sc_,%)‘__3‘_c_|l —-L%(cql)-q-(c—'}‘-)- + ZE‘:_l)i}’ (187)
m, =0
where ¢ = 3\/2nD,. (188)
Tc obtain the total value of {1()\) , it is necessary to find

A 5 N(S‘) , and C)id; for all values of ,Q, l"’n,.l’ l"‘k--la and
|"“'k| which give nonzero c}\é: . Change of these variables alters
dxd; by a multiplicative constant (see Appendix II), alters 3 slightly
in terms of ¥ and «, and affects the term (%_)) in N(}) , Further-
more, the value of X s dependent upon £ , but this effect can be
neglected, When all the partial contributions to £2{A) are totalled,
the final result is thirty times the partial sum given above:

oy = 30[nMW]

-y 20

. (189)
Prom Bquaticns {187) and (189), we can show that

Q) = _‘% oo (190)

fL{e) may also be obtained from Equation (48):

o 2 o s
Do) = [X(Pf—fzf)] R (i¥1)
i
that is; f2(o) is the average over all possible configurations of the
square of the sum over i of (pf—z ) By using Equations (136) and
(137), it may be shown that Equation (191) leads to the same value for
Q) as is given above, This agreement serves as an excellent check

or. the magnitude of C2(A).
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CALCULATION OF THE STRESS RELAXATION

From Equatica (80), the force at constant extensiorn is

N
stt)] = coj e TE@anr. iaa)
If the function Z(c) is defined by
4
— ¢ bleet))  &{3c«13) B(c+3)
= 142 + 3 4 ) . o ~ 2ACFS 193
Zlc) (&3);{ 42 + 3¢ + 24bn(c+l) Ei” (S et 4 (193)
Equatica (73) may he wri‘tem as
2
£y = Blelbl 7 0y (194)

%% ¢,
where C= 1’./?’ 2nd T, = a’n <, /2 kT . Substitutiocn of E1r) into
Equation (192) gives

'(fl?.)c’ ¥ I)

L =3
s(t)i = -‘;’—N‘.H“.T‘ {Z(‘:)e dig (195)
€ °

The integrand has been evaluzted numerically as a functicn of ifc and

integrated graphically. The results are given in the following table,

Table I

Theoretical Stress Relaxetion for §,=§,

o -z
L/, {2l (“ka(-‘;) s(t)/s(o)
0 1,753 1,000
0,0035 1.676 0.956
G, 01 1,553 0,885
0,033 1,257 0,717
G;1 0,846 0,483
C.33 0.310 0,177
1.C 0.07C 0.040

e s
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The normalized stress 5(13/5(0) is obtained by dividing the integral
by 1.733.

The graphical integration miy be checked by finding the exact
value of the integral when t=0 . By ordinary anaiytic nethods, it may

te shown that

X
{ Z2{)dc = 2
Jc <* g’

agreeing with the value cbtained Yy graphical integraticn tc within

0.28. The stress at t=0 is thus

o z
S(O)L = ?N‘n “OTE -
s{t)/sle})  is plotted versus the logarithm ot t/7¥, in Figure 3,

with 7T, egual *g 102'04 hours.

(1%6)

(197)

————
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APPENDIX V

EVALUATION oF Q(A) F® €, =g A’

It is the purpese of this appendix to calculate the diffusica
tensor, the expansicn coefficients of the potentizl, and Q{X} that
result from the assumpticns

€ A ign
€. = ¢ A(2n+1-i), L2 net (198)

The derivation of the avercgo diffusicn temsor is carried out
in Appendix I in & way Scmewhzt more general than was first givea by
Kirkwood and Fuoss, and its results are directly applicable here, From

Equeticns (126), (127), (128), ard £129). the only ncnzerc terms in @

are
~ _ = _ (p+)Mp+2i0,
Cee = @w' 4AnT (19%)
5 (p~1Xp+2)D,

=ad 2 2a -y (200)

where, 2s befcre,

(201)

]
<3
@

normalized eigenfunctions remain the same as in Eguatiom (134), but

the eigenvaluss ars now

(piﬁl)f?i-Z)D. . ‘ R Zrn-t \ -(p+2} 2;
)‘Z_M'—{iiu”if L‘;{“-E—n_l] " - (202)

e expensicn coefficients of the potential are

&=ifY

3

RS
ha
[}
(&

.

':.' [v]~

—;:( pi-22! HV dg.
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Using Equation (103) of Appendix I and neglecting %g w5 We find that
n . 5
< i Va .qg
EAS Z ZW“ Wt 2oy 2 orey (204)
= '1: j:n\z k=rme2
and £
In o o~ = Zm S
“»u 2~ 2 = z
Z— 22 % 24 Z Lb(,)(g,-ej)(g;g.‘) + 2a 'Z Z N CREN (CRY- TR o
! 4=2 k= o2 kemaZ (-QS)
4= -
(JZ < Jilo
wherz b{)=¢ " (202)
- b 2w e. ‘
AN ===l - 2ahd
&’ 4
= '-ri

2

By evaluating b{j) and using p’- 22} = a—f-Szf we find that

WS Tl Y Y e e

W-:J J|= me2 EY AL 2 ‘
@ - . . . |
ij is wnalitered by change <f tkco diffusicn ccocf{ficients and may be -

found from the formulas in Appendix II, For the example given previcusly,

(€3] s
(£= m, = O) s Substituticn of 713}& into Equaticn (207) gives, for j2n+l,

. Q:." = e B o Zu 2¢
4o = Bl (3 =L S A TR TTE TR TR P |

Ti is now possibie to fimd QA . N({X] has the same wvalue

2s in Equation {(I81), btut X is

ipet){p+2} i) SLE L) J—
LP pPrI)L, N > ,[l——ll 3

A= oA

tag)
2 (208)
Q..
shen $=0 . Using 2n integral 2s zn zpproXimzticn ic this swmatiom,

we have

by : . i
T 3 I'ih-w- 5)P {n-w)?""‘j }.
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From Equations (179), (181), and (208), the contribution to S1(A)

when £=m_=0 is

32A; 4 szl 2s gr._.,‘)‘, 3€+a-2Y
R, = 2 B e )
m.,¥o o";,’::;

X(u .)( ) !- )( )(s-r:r'-.}- (211)

The 1limils on this sum are the same as are given in Appendix III, except

that the last one (derived from X\ & N\ ) is now

+ ert
i e e B B L e

(p+2)W'D, (o™ P

By asymptotic expansion of the binomial terms for large values of the
variables, the sum may be transforwmed into a sevenfold integral and
evaluated by the procedures exemplified in Appendix IiI, Six integra-
tions yield

i 4 (2904)

RAa"n 5
ow)],., = (o) (213)
"'l;-:..'o 45 (p+1)'(29+3)
CG o RN S PR L A
vhere A(c) = (c+3) P f (x+2) P> [ -x P ]d'-’ (214)
an'a |
with e D,)‘ = A, (215)

The seventh integral is not generally expressiovle in closed form,

As before, the total value of Q2(A} is the sum of the
coniributions for various .2, |m,.,.|, |"“k-,|, and |mk| . The rela-
tive magnitudes of the contiributions are unaltered by change of the

resistance constants, and {Q(A) is thirty times the partial sum above,



APPEMDIX ¥ a2

Fron Equaticns {(213) and (214) we may show that
E-qu‘ n}?s-’

3ip+t)*(p-2){2p+3) ~ (218)

Qfe) =

As in Appendix IIT, it is also possible to find {Q(®) fre= Equation (48):

Sy 2 2y 12
Q=) = IZ E(F‘—Zz“)l_ (217)
(8
By using Equations (136) and (137) we find that this average leads %o
the same value for ..1l{=) as is obtained above, indicating that the

magnitude of (2(A)} is correct.
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CALCULATION OF THE CCRRECTED STRESS RELAXATION

When p is equal to five, #(c) in Equation (214} becomes

14
2l =(c+3] ff“z)’“"‘ )ox. —_
Loavy
We could find 2 sclution in closed form for this .integral, tut it would
be quite invoiwved. Tastsad, we shzll use the approximaticn that
4 4 3 *
[ T = en)?l6- 25 - 255) - 2420, (219)

From Equation (1), E{Y) is them equal to

ey _ 0.08072N (kT (o 5 0n % 7y 320 0.3 1 _fce3
E(x = € ainA (ce 2y 7.287 + (c+)*| S (8 ghwr i (c“,, ::. )’] } (220)

From Equation (84}, the stress at constant extension is

ek, z
smL: Q.005817 N, nkTe gr =5 { 7.287 +{e+)® [ sl - 2R~ %}?)3‘]}5.;(221)

This integral has been evaluated graphically. The ameunt of graphical
integratior mey be reduced comsiderably by analytic zprroximaticas to
the tail of the integr2l from ¢, to ™ , where ¢, is zny oumber much
greater then unity, Alsc, when &t/ is much smaller than unity,

s{t}-s(C) nay be determined analyticaily, Values of the interral

for various t/=~] zre given in the table below,

— e

23 27 e
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The graphical integration ray be checked tw computing the

exect value of ${0) . For arbitrary p,

(p+2° NuakTe 7 2480
1) 1 I SAiEy
S” < 3{p-')(2p-3) ic de e (222)

By ordinary metheds, ve find that

8

FLICIW (g3 (2p+21)

< dc I 2(p-24p+3) " (223)

@ by,

For p=5 , the integral is 53.79, agrecing with the value cbtained by

graphiczl integration to within 0.28. It follows that

_ ran2p-2)

=2t
S(OIJ€ 5(?#3}(2f‘3) No LnTt' (224)

For p=5, s{t)/ s(6) is plotted versus the lugarithm of /%' inm

Figure 5, with 7, set egual to 10'*'07 hours.

o e

B

——— e
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Theoretical Stress Relaxation for

t/,
0

1079

10'8

107

10-6

1070

1074

10'3

1072
0.017
C.03

0,06

6,17
0,3
0,6

1,0

Table II

o (3
S“ e (T"kc' %‘édc

59,86
57,05
55.71
53,72
50,68
46,51
39,56
29,40
15,73
12,62

9,30

5.77

3,74

Gi= GAL°
s(t)/s(0)
1,000
,953

.931

85
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APPENDIX VII

CALCULATION OF THE CORRECTED DIELECTRIC DISPERSION

The general solution of the diffusion equation for a polymer

molecuie in an electric field was given originally by Kirkwood and
Fuoss [7]. Their solution is as follows, Let €, be the unit vector
in the direction of the electric field, Let p, denote the expansion

coefficients of p-e, , where p is the dipole moment of the molecule:

P
poey= 7= % pa - (225)

¥, and A, as before, are the set of eigenfunctions and eigenvalues

of the diffusion operator V-0:V , Let Q(X) be the sum of ppy

s
for all > ¢\  normalizcd

Px P (226)

The normalization constant (}:'93)2 is the averzge over all possible

configurations ¢f the squar : ¢ Bo€s o The reduced polarization of

the polymer is

s
Q(w) = _::(‘l" A‘r

J (viwn) (227)
2
where G(v) = [?\ %% ])\=l/"’ : (228)

Kirkwood and Fuoss calculate Q{w) upon the assumption that

5= Co . Consequently, their result is applicable only to a dilute

solution of the poiymer, It is the purpose of this appendix to solve
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. for Q(v») when § = COA'LP . Yhen p is five, this result should give
the pelarization of an unplasticized polymer, It will be assumed that
the polymer jis polyvinyl chioride,

In polyvinyl chloride, the individual dipole moments are
associated with the C-CL bonds, Let pM, be the scalar moment of
each of these dipoles and b, the unit vector in the direction of the

C-C¢ bond attached to the k-th carbon atom, Thsn

&= Po Z by (229)
even k
(k)
and My = e Z (CARN (230)
even k
. #
where ﬁ:k): ‘[‘f—o)((bk' §‘3)L/; C!CL- (231)

Using the geometry of the chain, we may show thatﬁ
bk. e, = ,3".‘(G’¢} L\( XMI) /\("1‘ Knez)*.. /-\(Q’anu).{.\('\’ik':—r) 33,(232)

if kun+l ., The matrix (S, #) is defined by Equation (141). The

. k) ™
integral for Q\() may bc evaluated in much the same manner as P

is found in Appendix II, For kzn+! | we find that
) ken-e-1f2 |\ 1 =
B = T (w8, - w5 /LT[[U) QRCICH
i (233}
X[ 580,00 - o.prr & oy s TT(o) [Ta,
even « gsku 1

I“’1‘1'1e order of the dyadics in Equation (232) is the reverse of the
order given by Kirkwood and Fuoss, which appears to be erroneous,
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where ¥, is (I £ /-3 )/2, and (), , (')%, and (!):L are defined in
b4

’ .
ppendix II", The numbers Q  are the expansion coefficients of sin©

b

in Legendre polynomials of cos© [17]:

sin€ = Z a, P, (cos9), -

even o

with o, = T/4 and

;o (.t-l)(«+l)(2o<+5) 7

e, = : . )
“2 7 (D) (s )20l ¥ e
The quantity 4 is equal to t} : number of mq. that are +1:
2n-1
g = ., (236)
5 o,
%:2

(k)
From the form of @A

for k2 n+l , it may be seen that p, is zero
unless there exists a k such thai

1) m =0

2) m, = 0 gor q €N

) S0+ §77(), =

4) Imgl =0 orl jor ne2€q &k-l

55 (0L (0, =0 gor nvlsqsc k-2
6) Imkl = |

7‘) m'i:_O gev CL>/k+l.

Corresponding selection rules occur if k¢ n , From 6) and 7), we may

k
show that there is at most one ronzero @;) in the sum for p., , It
follows that
20 i (@Y c?, 1.2
Sg iyl o) i [ .
/"").,P,\ = ("2'1l l._gg,ﬂ((-'h-ﬂ L (2as1) § "an i'“Cﬂ'

eveir

n’l‘he positions of ¥ and Y. in Equation (233) are determined by the

+ sign in Equation (232), Since @/ 8, does not depend upon the
choice of sign, all the optical isomers of polyvinyl chloride have the
same dielectric properties,

(237}
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The next step is to evaluate {1(A), The same approximation
can be used here as is employed in Appendix IIT:
QM T —t— - Z N(-}\))u; B (238)
(g &) o
N(;\) is the number of nonzerc p., that may be obtained by rearrange-
ment of the mq while keeping Z ,k, and @& constant; A is the average

eigenvalue of these [Ax . For convenicnce, k will be replaced by the

variable s , where s denotes the number of m% between m,_ ., and
m,_, Ainclusive:
s= k-n. (233)
As an example, let us assume that £=! and consequently

that m_,, =0 , From the theorem in Appendix TiI, it may be shown

that
N = 27 (s T5). (240)
The additicnal power of two appears when both sides of the chain are
included in N(X) . From Equation (209) in Appendix V, we have
Box elMeedt Sy o reen oy (262)
2ARP CL'LZ g %’ -
The sum may be approximated by an integral, to give
- . (p+2)D,n'er i ;
A= TTZRs [(h-S)P” - hP"]o (242)

In aadition, (p-e)"  is equal to nfz:l/.B * Combining Equations (237),

%

o
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(238), =nd (240), we find that the contribution to M{N) for £=1 is

[Q(f\)]1 = 2 Z (%)q(st}'-;). (243)

*) 5,0

he limiis on this sum are Oss<¢n, $/2¢0<S, seven  ang

2AAs | i -1
g s (P.,z)Denz[(h__s)Pﬂ - P ] " (244)

If we introduce the asymptotic expansion of the binomial coefficient,

the sum may be replaced by an integrai

L.(l()\) =“f ,( J—_<7 [ Q—%'?—Uzz]dca\s, (245)

530 G:5/2

with Equation (244) still to be added as a limit, The integral over
¢ 1is approximately 1/3 if the limits include 2s/3 , and zero if they

do not. Hence

[ami,, = -'J (246)
)
L 5= (;:\Aoohl[(n-;)?' - ]-" (247)
The second integration gives
[Q(,\\]M = 5[1-0+M )""—] (248)
As in Equation (9G),
v =& A Y (pe)kT (249)

In order to find the total value of Q(X\) , it is necessary

{0 2dd up the contributions for ecach value of 2. The dependence of A
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upon £ can be negleuted, and Qz) = 3[0()\)]1,, :
1
QY = 1= {1 +A7) P (250)

From Equations (227) and (228) it is readily found that

Yo
Glv) = = e (251)
pet) ¥ Pri(rer)?
’ /@ a
Qw) = = ! : \
and _ (P.-)J -r(F—"'_)(rwr.’)(%'i)(Hiw‘r) (252)

By a change in variables, Equation (252) becomes

= -l
rPdr

rP”

(iw'y.'_. 3) Qlw) = Lw‘ro’J

b ’ ‘!'
+iwr, -1

(253)

For arbitrary p , it is impossible to find Qw)  in closed

form, For p=5 , however, the integration can be performed, We obtain

oty [0+ 8) ) (e v )

twr-)Qw) = ==
ey by G- (1 =%y (1 )l Sl

y is defined by

‘j - (l_.{l,o'r:)z‘_, (255)

is above, ¥, ds (Jxv3)2 , Q(w) is given in the table below for
varicus vaiues of w, J(w)  is the real part of Q(w) , while -H(w)

is the imaginary:

Qlw) = T{w) - L H(w). (256)
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The maximum value of H(w) is about 0,143 at w7, £ 10, H (w)! Hmax

is plotted in Tigure 6, with +  set equal tc 107199 seconds,

Table III

3 , . e i
Theoretical Reduced Polarization for =8 Al

w, T(w) H(w) Hw)/ Humax
.Ul —?55;- -766;5. .051 .
.05 .988 .0236 .165
s .959 . 0570 .398
0 .923 .0837 .584
o7 .904 .0949 .662
i .880 .1063 . 742
2 .825 .1254 875
5 .740 .1404 .980
7 707 .1427 . 996
10- b .673 ,1433 1,000
20 .606 .1399 . 576
50 | 925 .126C . 900
100 .468 1193 L8632
200 .418 .1085 . 758
500 .359 . 0947 .661
2,000 .,285 .0759 .030

10,000 .218 .0583 .407
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